Math 54. Solutions to the Final Exam

1. (20 points) Let $\left(x_{1}, x_{2}, x_{3}\right)$ be the solution to the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}+7 x_{3} & =6 \\
2 x_{1}+x_{2} & =4 \\
-x_{1}+3 x_{2}+5 x_{3} & =0 .
\end{aligned}
$$

Use Cramer's rule to find x_{3}.
By Cramer's rule,

$$
\begin{aligned}
x_{3} & =\frac{\operatorname{det} A_{3}(\vec{b})}{\operatorname{det} A}=\frac{\left|\begin{array}{ccc}
1 & 2 & 6 \\
2 & 1 & 4 \\
-1 & 3 & 0
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 2 & 7 \\
2 & 1 & 0 \\
-1 & 3 & 5
\end{array}\right|}=\frac{(-1)\left|\begin{array}{ll}
2 & 6 \\
1 & 4
\end{array}\right|-3\left|\begin{array}{ll}
1 & 6 \\
2 & 4
\end{array}\right|}{-2\left|\begin{array}{cc}
2 & 7 \\
3 & 5
\end{array}\right|+\left|\begin{array}{cc}
1 & 7 \\
-1 & 5
\end{array}\right|} \\
& =\frac{-(8-6)-3(4-12)}{-2(10-21)+(5+7)}=\frac{-2+24}{22+12}=\frac{22}{34}=\frac{11}{17} .
\end{aligned}
$$

2. (30 points) Let $A=\left[\begin{array}{ccccc}2 & 4 & 3 & 1 & 17 \\ 1 & 2 & 0 & 1 & 2 \\ 2 & 4 & 1 & 2 & 8 \\ 2 & 4 & 2 & -5 & 19\end{array}\right]$. and $B=\left[\begin{array}{ccccc}1 & 2 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Given that A is row equivalent to B, and using the methods taught in Math 54, find:
(a). A basis for Row A.

Use the nonzero rows of B :

$$
\left[\begin{array}{l}
1 \\
2 \\
0 \\
1 \\
2
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
4
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right] .
$$

(b). A basis for $\operatorname{Col} A$.

Use the pivot columns of A :

2
(c). A basis for $\operatorname{Nul} A$.

Further reduce B to reduced row echelon form, and write the solution of $A \vec{x}=\overrightarrow{0}$ in parametric vector form:

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
1 & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llllc}
1 & 2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 4 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{2}-3 x_{5} \\
x_{2} \\
-4 x_{5} \\
x_{5} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-3 \\
0 \\
-4 \\
1 \\
1
\end{array}\right] .}
\end{aligned}
$$

Therefore a basis for $\operatorname{Nul} A$ is

$$
\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-3 \\
0 \\
-4 \\
1 \\
1
\end{array}\right] .
$$

3. (20 points) Given bases

$$
\mathcal{B}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right\}
$$

find a matrix M such that

$$
[\vec{x}]_{\mathcal{B}}=M[\vec{x}]_{\mathcal{C}}
$$

for all $\vec{x} \in \mathbb{R}^{2}$.
By the method of Example 3 on page 230, we compute $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$:

$$
\begin{aligned}
{\left[\begin{array}{llll}
\vec{b}_{1} & \vec{b}_{2} & \vec{c}_{1} & \vec{c}_{2}
\end{array}\right] } & =\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 2 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & -1 \\
0 & 1 & 2 & 1
\end{array}\right]
\end{aligned}
$$

and so

$$
M=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}=\left[\begin{array}{cc}
-1 & -1 \\
2 & 1
\end{array}\right] .
$$

4. (20 points) Let V be \mathbb{P}_{2}, with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Compute the orthogonal projection of p onto the subspace spanned by q, where

$$
p(x)=x^{2} \quad \text { and } \quad q(x)=1+x .
$$

We have

$$
\langle p, q\rangle=\int_{0}^{1} x^{2}(1+x) d x=\int_{0}^{1}\left(x^{3}+x^{2}\right) d x=\frac{x^{4}}{4}+\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}
$$

and

$$
\langle q, q\rangle=\int_{0}^{1}(1+x)^{2} d x=\int_{0}^{1}\left(x^{2}+2 x+1\right) d x=\frac{x^{3}}{3}+x^{2}+\left.x\right|_{0} ^{1}=\frac{1}{3}+1+1=\frac{7}{3} .
$$

Therefore

$$
\operatorname{proj}_{q} p=\frac{\langle p, q\rangle}{\langle q, q\rangle} q=\frac{7 / 12}{7 / 3}(1+x)=\frac{1+x}{4} .
$$

5. (20 points) Find all least-squares solutions to the linear system

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3} & =0 \\
x_{1} & -x_{3}
\end{aligned}=1 .
$$

We have

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right] \quad \text { and } \quad \vec{b}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

so

$$
A^{T} A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
2 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 1 \\
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 3
\end{array}\right] \quad \text { and } \quad A^{T} \vec{b}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Therefore the normal equations have the following augmented matrix, which is row reduced as follows:

$$
\begin{aligned}
{\left[\begin{array}{llll}
2 & 2 & 0 & 1 \\
2 & 5 & 3 & 1 \\
0 & 3 & 3 & 0
\end{array}\right] } & \sim\left[\begin{array}{llll}
2 & 2 & 0 & 1 \\
0 & 3 & 3 & 0 \\
0 & 3 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
2 & 2 & 0 & 1 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 1 & 0 & \frac{1}{2} \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & \frac{1}{2} \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{3}+\frac{1}{2} \\
-x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

(in parametric vector form).
6. (20 points) For each of the parts listed below, either give an example of such a matrix, or give a brief reason why no example exists. If you give an example, it must be either a specific matrix, or a matrix expression (involving sums, products, inverses, etc.) that evaluates to a specific matrix.
(a). A 3×3 matrix A with eigenvalues 1,2 , and 3 , and corresponding eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}3 \\ 4 \\ 2\end{array}\right]$, respectively.

The matrix $\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]$ is nonsingular (it is upper triangular, so it is easy to see that its determinant is nonzero). Therefore, a matrix A exists:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 4 \\
0 & 0 & 2
\end{array}\right]^{-1}
$$

(b). Same as part (a), but with $\vec{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

Since $\vec{v}_{1}+\vec{v}_{2}-\vec{v}_{3}=\overrightarrow{0}$, the three vectors are linearly dependent. Since eigenvectors for distinct eigenvalues must be linearly independent (Theorem 2 on page 240), there can be no such matrix A.
(c). Same as part (a), but with $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$, and requiring that A be symmetric.

For symmetric matrices, eigenvectors of distinct eigenvalues must be orthogonal (Theorem 1 on page 341). However, \vec{v}_{1} and \vec{v}_{3} are not orthogonal, so there can be no such matrix A.
7. (25 points) (a). Compute the Wronskian $W\left[x, e^{x}, \sin x\right]$.

$$
\begin{aligned}
W\left[x, e^{x}, \sin x\right] & =\left|\begin{array}{ccc}
x & e^{x} & \sin x \\
1 & e^{x} & \cos x \\
0 & e^{x} & -\sin x
\end{array}\right|=x\left|\begin{array}{cc}
e^{x} & \cos x \\
e^{x} & -\sin x
\end{array}\right|-\left|\begin{array}{cc}
e^{x} & \sin x \\
e^{x} & -\sin x
\end{array}\right| \\
& =x e^{x}(-\sin x-\cos x)+2 e^{x} \sin x=e^{x}((2-x) \sin x-x \cos x)
\end{aligned}
$$

Note: Wrong answer.
The Wronskien Lemma states that the functions are linearly independent because you can find at least one case where the Wronskien is nonzero.
(b). Are the functions $x, e^{x}, \sin x$ linearly independent? Explain, using the Wronskian.

No, because the Wronskian is not everywhere zero; for example,

$$
W\left[x, e^{x}, \sin x\right](\pi)=\pi e^{\pi} .
$$

(c). Use a property of Wronskians to show that there is no differential equation

$$
y^{\prime \prime \prime}+p_{1} y^{\prime \prime}+p_{2} y^{\prime}+p_{3} y=0,
$$

with p_{1}, p_{2}, and p_{3} continuous on $(-\infty, \infty)$, for which x, e^{x}, and $\sin x$ are all solutions.

This is a Wronskian of three functions, so if those functions are solutions to the given (third-order) differential equation, then the Wronskian would either always be zero or always be nonzero (Theorem 3 on page 480). However, we saw that the Wronskian is nonzero when $x=\pi$, and it is zero when $x=0$. So, the three functions cannot all be solutions to the differential equation.
8. (20 points) Let

$$
A=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

(a). Compute $e^{A t}$.

As in Example 1 on page 554, we first compute the characteristic polynomial of A. Since A is upper triangular, this is easy: it is $(\lambda-2)^{2}$. The matrix has a double eigenvalue of $\lambda=2$.

We then note that $(A-2 I)^{2}=\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. This allows for computing $e^{A t}$:

$$
e^{A t}=e^{2 t} e^{(A-2 I) t}=e^{2 t}\left(I+t\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right]\right)=e^{2 t}\left[\begin{array}{cc}
1 & 3 t \\
0 & 1
\end{array}\right] .
$$

(b). Write down the fundamental matrix $X(t)$ for the differential equation $\vec{x}^{\prime}=A \vec{x}$.

It is $e^{A t}=\left[\begin{array}{cc}e^{2 t} & 3 t e^{2 t} \\ 0 & e^{2 t}\end{array}\right]$.
(c). Write a general solution to $\vec{x}^{\prime}=A \vec{x}$ as a linear combination of vectors.

$$
\vec{x}(t)=c_{1}\left[\begin{array}{c}
e^{2 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
3 t e^{2 t} \\
e^{2 t}
\end{array}\right]
$$

9. (30 points) (a). For the initial-boundary value problem

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial u}{\partial x}=\frac{\partial u}{\partial t}, & 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, & t>0, \\
u(x, 0)=f(x), & 0<x<\pi,
\end{aligned}
$$

carry out separation of variables to produce two ordinary differential equations and all corresponding boundary or initial conditions.

Substitute $u(x, t)=X(x) T(t)$ into the original differential equation and divide by $X(x) T(t)$:

$$
\begin{aligned}
X^{\prime \prime}(x) T(t)+4 X^{\prime}(x) T(t) & =X(x) T^{\prime}(t) ; \\
\frac{X^{\prime \prime}(x)}{X(x)}+\frac{4 X^{\prime}(x)}{X(x)} & =\frac{T^{\prime}(t)}{T(t)} .
\end{aligned}
$$

Since the left-hand side is independent of t and the right-hand side is independent of x, their common value must equal some constant $-\lambda$.

Looking at the left-hand side first, we have

$$
\frac{X^{\prime \prime}(x)}{X(x)}+\frac{4 X^{\prime}(x)}{X(x)}=-\lambda ;
$$

therefore

$$
\begin{equation*}
X^{\prime \prime}(x)+4 X^{\prime}(X)+\lambda X(x)=0 . \tag{1}
\end{equation*}
$$

The boundary conditions $u(0, t)=u(\pi, t)=0$ give conditions on $X(x)$:

$$
\begin{equation*}
X(0)=X(\pi)=0 \tag{2}
\end{equation*}
$$

For the right-hand side, we have

$$
\frac{T^{\prime}(t)}{T(t)}=-\lambda ;
$$

therefore

$$
\begin{equation*}
T^{\prime}(t)+\lambda T(t)=0 \tag{3}
\end{equation*}
$$

The two differential equations are (1)-(2) and (3).
(b). Find an eigenfunction for one of the ordinary differential equations that you found in part (a). [Correction: Find an eigenfunction for X.]

The characteristic polynomial of (1) is $r^{2}+4 r+\lambda$, which has roots

$$
\frac{-4 \pm \sqrt{16-4 \lambda}}{2}=-2 \pm \sqrt{4-\lambda}
$$

Based on our experience with the heat equation, we look for values of λ that cause the roots to be complex (and not real); i.e., $\lambda>4$. So, if $\lambda>4$, then the roots are $-2 \pm i \sqrt{\lambda-4}$, and the general solution to (1) is

$$
X(x)=c_{1} e^{-2 x} \cos x \sqrt{\lambda-4}+c_{2} e^{-2 x} \sin x \sqrt{\lambda-4}
$$

The boundary condition $X(0)=0$ then gives $c_{1}=0$, and the other boundary condition gives $\sin \pi \sqrt{\lambda-4}=0$. This gives that $\sqrt{\lambda-4}$ must be an integer (necessarily positive).

The choice $\lambda=5$ gives $\sqrt{\lambda-4}=1$, which in turn gives the eigenfunction

$$
X(x)=e^{-2 x} \sin x
$$

10. (20 points) Find a formal solution to the initial-boundary value problem

$$
\begin{aligned}
\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<1, \quad t>0, \\
u(0, t)=u(1, t)=0, & t>0 \\
u(x, 0)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin n \pi x, & 0<x<1 .
\end{aligned}
$$

This is the heat equation with $\beta=3$ and $L=1$. The initial condition gives $c_{n}=1 / n^{2}$, so a formal solution (using the given formula) is

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{1}{n^{2}} e^{-3(n \pi)^{2} t} \sin n \pi x .
$$

