MATH 185-4 FINAL SOLUTION

1. (8 points) Determine whether the following statements are true of false, no justification is required.
(1) (1 point) Let D be a domain and let $u, v: D \rightarrow \mathbb{R}$ be two harmonic functions, then $u+i v$ is analytic on D.

False. u and v should satisfy the Cauchy-Riemann equation. For example, for harmonic function $u(x, y)=x$ and $v(x, y)=0, u+i v$ is not analytic.
(2) (1 point) Let D be a domain and let $f: D \rightarrow \mathbb{C}$ be an analytic function, then $f(z) \mathrm{d} z$ is a closed form on D.

True. This is a theorem on the book. You can also directly check that $f(z) \mathrm{d} z=f(x, y) \mathrm{d} x+i f(x, y) \mathrm{d} y$ is a closed form, by using Cauchy-Riemann equation.
(3) (1 point) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function. Then for any $z_{0} \in \mathbb{C}, f(z)$ equals a power series centered at z_{0}, and the radius of convergence of this power series is ∞.

True. This is a theorem on the book: analytic functions have power series expansions, and the radius of convergence is the radius of the disc where f is (can be extended to) analytic.
(4) (1 point) If $f:\{1<|z|<2\} \rightarrow \mathbb{C}$ is an analytic function, then there exist analytic functions $f_{1}:\{|z|<2\} \rightarrow \mathbb{C}$ and $f_{2}:\{|z|>1\} \rightarrow \mathbb{C}$ such that $f=f_{1}-f_{2}$ on $\{1<|z|<2\}$.

True. This is just the Laurant decomposition.
(5) (1 point) For the function $f(z)=\sin \frac{1}{z}, z=0$ is a pole.

False. If $z=0$ is a pole, $\lim _{z \rightarrow 0} \sin \frac{1}{z}$ should be ∞. However, for $\left\{\frac{1}{n \pi}\right\}$, we have $\frac{1}{n \pi} \rightarrow 0$ and $f\left(\frac{1}{n \pi}\right)=\sin n \pi=0$. Moreover, this is actually an essential singularity, since for $\left\{\frac{1}{\left(2 n+\frac{1}{2}\right) \pi}\right\}$, we have $f\left(\frac{1}{\left(2 n+\frac{1}{2}\right) \pi}\right)=1$.
(6) (1 point) Let D be a domain and let $f: D \rightarrow \mathbb{C}$ be an analytic function, then for any $z_{0} \in D$, the residue satisfies $\operatorname{Res}\left[f(z), z_{0}\right]=0$.

True. The residue at z_{0} is the coefficient of the $\left(z-z_{0}\right)^{-1}$ term in the Laurent expansion. Since f is analytic, there is always no $\left(z-z_{0}\right)^{-1}$ term.
(7) (1 point) Let D be a bounded domain with piecewise smooth boundary, and let f be a meromorphic function on D that extends to be analytic on ∂D and never vanishes on ∂D. If $\oint_{\partial D} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z=4 \pi i$, then f has exactly two zeros in D.

False. The statement only holds for analytic functions, but not for meromorphic functions. For a meromorphic function, the line integral equals $4 \pi i$ implies that the number of zeros minus the number of poles is equal to 2 .
(8) (1 point) Let $\left\{f_{n}\right\}$ be a sequence of univalent analytic functions defined on a domain D, and $\left\{f_{n}\right\}$ uniformly converges to $f: D \rightarrow \mathbb{C}$, then f is also univalent.

False. It is possible that f is a constant function. For example, we can take $D=\{|z|<1\}$ and $f_{n}(z)=\frac{z}{n}$, then the uniform limit is $f(z)=0$.
2. (10 points) Please briefly answer the following questions.
(1) (2 points) Let $D \subset \mathbb{C}$ be a domain and $f: D \rightarrow \mathbb{C}$ be a continuous function. What is the definition of " f is an analytic function on D "?

For any point $z_{0} \in D$, the complex derivative $f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exits, and the complex derivative $f^{\prime}: D \rightarrow \mathbb{C}$ is a continuous function.
(2) (2 points) Let $f:\left\{\left|z-z_{0}\right|<2\right\} \rightarrow \mathbb{C}$ be an analytic function, please write $f\left(z_{0}\right)$ as a complex line integral. (Cauchy's integral formula)

Cauchy integral formula:

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} \frac{f(z)}{z-z_{0}} \mathrm{~d} z, \text { any } r \in(0,2)
$$

(3) (2 points) Let $f:\{1<|z|<2\} \rightarrow \mathbb{C}$ be an analytic function, then what is the Laurent expansion of f ?

The Laurent expansion is to express f as $\sum_{k=-\infty}^{\infty} a_{k} z^{k}$, where

$$
a_{k}=\frac{1}{2 \pi i} \oint_{|w|=r} f(w) w^{-k-1} \mathrm{~d} w
$$

for any $r \in(1,2)$.
(4) (2 points) Let $f:\left\{0<\left|z-z_{0}\right|<1\right\} \rightarrow \mathbb{C}$ be an analytic function, then what is the residue of f at z_{0} ? Please also write it as a complex line integral. ba The residue of f at z_{0} is the coefficient of $\left(z-z_{0}\right)^{-1}$ in the Laurent expansion
of f, which is equal to $\frac{1}{2 \pi i} \oint_{\left|z-z_{0}\right|=r} f(z) \mathrm{d} z$ for any $r \in(0,1)$.
(5) (2 points) Let D be a bounded domain with piecewise smooth boundary, and let $f: D \rightarrow \mathbb{C}$ be an analytic function that extends to be analytic on ∂D and never equals 0 on ∂D. Please write the number of zeros of f in D as a complex line integral.

The number of zeros of f in D is equal to

$$
\frac{1}{2 \pi i} \oint_{\partial D} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z .
$$

3. (10 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function, and suppose

$$
f(z)=u(x, y)+i v(x, y)
$$

for two real valued functions u and v. Please show that

$$
g(z)=u(x,-y)-i v(x,-y)
$$

is also an analytic function on \mathbb{C}.

Let $U(x, y)=u(x,-y)$ and $V(x, y)=-v(x,-y)$. Then we need to check that $g(z)=U(x, y)+i V(x, y)$ satisfies the Cauchy-Riemann equation.

Since f is analytic, we know that the Cauchy-Riemann equation holds:

$$
u_{x}(x, y)=v_{y}(x, y) \text { and } u_{y}(x, y)=-v_{x}(x, y)
$$

For the function $g=U+i V$, we have $U_{x}(x, y)=u_{x}(x,-y)$ and $V_{y}(x, y)=$ $v_{y}(x,-y)=u_{x}(x,-y)$, so $U_{x}(x, y)=V_{y}(x, y)$ holds. We also have $U_{y}(x, y)=$ $-u_{y}(x,-y)$ and $V_{x}(x, y)=-v_{x}(x,-y)=u_{y}(x,-y)$, so $U_{y}(x, y)=-V_{x}(x, y)$ holds. This shows that U and V satisfy the Cauchy-Riemann equation.

Since f is analytic on \mathbb{C}, all the first order partial derivatives of u and v are continuous. The above equalities imply that all first order partial derivatives of U and V are also continuous. So g is an analytic function.

Alternatively, you can check that $g(z)=\overline{f(\bar{z})}$ and it is an analytic function. For the complex derivative
$g^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{g(z+\Delta z)-g(z)}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{\overline{f(\overline{z+\Delta z})-f(\bar{z})}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \overline{\left(\frac{f(\bar{z}+\bar{\Delta} z)-f(\bar{z})}{\overline{\Delta z}}\right)}=\overline{f^{\prime}(\bar{z})}$.
So the complex derivative of $g(z)$ exists, which is equal to $\overline{f^{\prime}(\bar{z})}$. This is a continuous function since f^{\prime} is continuous.
4. (10 points) Please compute the complex line integral

$$
\oint_{|z|=3} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z .
$$

The zeros of the denominator are $z=1$ and $z=-1$. So for any small $\epsilon>0$ (say smaller than 1), since $\frac{\cos z}{(z-1)(z+1)^{2}}$ is analytic on $\{|z|<3\} \backslash\{ \pm 1\}$, we have

$$
\oint_{|z|=3} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z=\oint_{|z-1|=\epsilon} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z+\oint_{|z+1|=\epsilon} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z
$$

For the first term, we have

$$
\frac{1}{2 \pi i} \oint_{|z-1|=\epsilon} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z=\frac{1}{2 \pi i} \oint_{|z-1|=\epsilon} \frac{\frac{\cos z}{(z+1)^{2}}}{(z-1)} \mathrm{d} z=\left.\left(\frac{\cos z}{(z+1)^{2}}\right)\right|_{z=1}=\frac{\cos 1}{4} .
$$

For the second term, we have
$\frac{1}{2 \pi i} \oint_{|z+1|=\epsilon} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z=\frac{1}{2 \pi i} \oint_{|z+1|=\epsilon} \frac{\frac{\cos z}{z-1}}{(z+1)^{2}} \mathrm{~d} z=\left.\left(\frac{\cos z}{z-1}\right)^{\prime}\right|_{z=-1}=-\frac{\sin 1}{2}-\frac{\cos 1}{4}$.
So

$$
\oint_{|z|=3} \frac{\cos z}{(z-1)(z+1)^{2}} \mathrm{~d} z=2 \pi i\left(\frac{\cos 1}{4}-\frac{\sin 1}{2}-\frac{\cos 1}{4}\right)=-i \pi \sin 1 .
$$

5. (10 points) Let D be a domain, and let $f, g: D \rightarrow \mathbb{C}$ be two analytic functions. Suppose that g is not constantly zero and $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{D}$.
(1) (2 points) On which subset of D is the function $h(z)=\frac{f(z)}{g(z)}$ defined? (It is possible that $g(z)=0$ for some $z \in D$.)

The function $h(z)=\frac{f(z)}{g(z)}$ is defined on the subset of D where g is not equal to 0 , i.e.

$$
\{z \in D \mid g(z) \neq 0\}
$$

(2) (8 points) Please show that $h(z)$ can be extended to an analytic function on D.

Since $\{z \in D \mid g(z) \neq 0\}$ is an open set, and both f and g are analytic, $h(z)=\frac{f(z)}{g(z)}$ is analytic on $\{z \in D \mid g(z) \neq 0\}$. So we need only to take care of the zero set of g, i.e. $Z_{g}=\{z \in D \mid g(z)=0\}$.

Since g is not constantly zero, the zero set Z_{g} consists of isolated points. So for any $z_{0} \in Z_{g}$, there exists $\epsilon>0$ such that $\left\{\left|z-z_{0}\right|<\epsilon\right\} \cap Z_{g}=\left\{z_{0}\right\}$.

On the set $\left\{0<\left|z-z_{0}\right|<\epsilon\right\}, h(z)=\frac{f(z)}{g(z)}$ is an analytic function, and $|h(z)|=\left|\frac{f(z)}{g(z)}\right| \leq 1$. Since h is bounded near z_{0}, z_{0} is a removable singularity of $h(z)$. So we can extend $h(z)$ to z_{0} analytically.

This shows that all the zeros of $g(z)$ in D are removable singularities of $h(z)$. So we can extend h to an analytic function on D.
6. (10 points) Please compute

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{x^{4}+16} \mathrm{~d} x
$$

(Your answer must be a real number!)

We consider the function $f(z)=\frac{\sqrt{z}}{z^{4}+6}$ on $\mathbb{C} \backslash(-\infty, 0]$, where \sqrt{z} is defined by $\sqrt{|z|} e^{i \frac{\operatorname{trg} z}{2}}$ with $\operatorname{Arg} z \in(-\pi, \pi)$. Then f is an analytic function on $\mathbb{C} \backslash(-\infty, 0]$.

Then we compute the complex line integral of $f(z)$ on the boundary of

$$
D_{R}=\{z \in \mathbb{C}|0<|z|<R, \operatorname{Re} z>0, \operatorname{Im} z>0\}
$$

Since the singularity of $f(z)$ in D_{R} is only $2 e^{i \frac{\pi}{4}}$, we have

$$
\oint_{\partial D_{R}} f(z) \mathrm{d} z=2 \pi i \cdot \operatorname{Res}\left[\frac{\sqrt{z}}{z^{4}+16}, 2 e^{i \frac{\pi}{4}}\right]=\left.2 \pi i\left(\frac{\sqrt{z}}{\left(z^{4}+16\right)^{\prime}}\right)\right|_{z=2 e^{i \frac{\pi}{4}}}=\frac{\sqrt{2}}{16} \pi e^{-i \frac{\pi}{8}}
$$

On the other hand, $\oint_{\partial D_{R}} f(z) \mathrm{d} z$ consists of three terms: integral along $[0, R]$, integral along the quarter circle γ_{R} and integral along [Ri,0i]. So we have

$$
\oint_{\partial D_{R}} f(z) \mathrm{d} z=\int_{0}^{R} \frac{\sqrt{x}}{x^{4}+16} \mathrm{~d} x+\int_{\gamma_{R}} \frac{\sqrt{z}}{z^{4}+16} \mathrm{~d} z-\int_{0}^{R} \frac{\sqrt{i x}}{(i x)^{4}+16} \cdot i \mathrm{~d} x .
$$

By the $M L$-estimation, we have

$$
\left|\int_{\gamma_{R}} \frac{\sqrt{z}}{z^{4}+16} \mathrm{~d} z\right| \leq \frac{\sqrt{R}}{R^{4}-16} \cdot \frac{\pi}{2} R=\frac{\pi R^{\frac{3}{2}}}{2\left(R^{4}-16\right)}
$$

This term goes to 0 as R goes to ∞.
we let R going to infinity, then

$$
\frac{\sqrt{2}}{16} \pi e^{-i \frac{\pi}{8}}=\lim _{R \rightarrow \infty} \oint_{\partial D_{R}} f(z) \mathrm{d} z=\int_{0}^{\infty} \frac{\sqrt{x}}{x^{4}+16} \mathrm{~d} x-\int_{0}^{\infty} \frac{\sqrt{i x}}{(i x)^{4}+16} \cdot i \mathrm{~d} x=\left(1-e^{i \frac{3 \pi}{4}}\right) \int_{0}^{\infty} \frac{\sqrt{x}}{x^{4}+16} \mathrm{~d} x .
$$

So we get

$$
\int_{0}^{\infty} \frac{\sqrt{x}}{x^{4}+16} \mathrm{~d} x=\frac{\sqrt{2}}{16} \pi \cdot \frac{e^{-i \frac{\pi}{8}}}{1-e^{i \frac{3 \pi}{4}}}=\frac{\sqrt{2}}{16} \pi \cdot \frac{1}{e^{i \frac{\pi}{8}}-e^{i \frac{7 \pi}{8}}}=\frac{\sqrt{2} \pi}{32 \cos \frac{\pi}{8}}
$$

7. (10 points) Please find the number of zeros of the polynomial

$$
p(z)=z^{7}+i z^{5}+1
$$

on the upper half plane $\{z \in \mathbb{C} \mid \operatorname{Im} z>0\}$.
For any $z \in \mathbb{C}$ with $|z|>2$, we have $|p(z)| \geq\left|z^{7}\right|-\left|z^{5}\right|-1 \geq\left(\left|z^{2}\right|-2\right) \cdot\left|z^{5}\right|>0$. So we only need to compute the number of zeros in the half disc

$$
D_{R}=\{z \in \mathbb{C}| | z \mid<R, \operatorname{Im} z>0\}
$$

for large R.
For large enough R, we want to define $\arg (p(z))$ continuously on ∂D_{R}, and check how much does the argument change when we goes along ∂D_{R} once.

Since R is very large, when z goes from 0 to R on the real axis, $p(z)$ goes from $p(0)=1$ to $p(R) \approx R^{7}$. Since $p(z)$ never crosses the y-axis for $z \in[0, R]$, we have $\arg (p(0))=0$ and $\arg (p(R)) \approx 0$.

Since $p(-R) \approx-R^{7}$ and the z^{7} term makes the main contribution of $\arg (p(z))$ on the half circle $\{z \in \mathbb{C}||z|=R, \operatorname{im} z \geq 0\}$. So we can continuously define $\arg (p(z))$ on the half circle such that $\arg (p(-R)) \approx 7 \pi$.

When z goes from $-R$ to $0, p(z)$ only crosses the y-axis once, since $z^{7}+1$ has only one real solution: $z=-1$. For $z \in[-R,-1), p(z)$ lies in the third quadrant. Since $\arg (p(-R)) \approx 7 \pi$ and $p(-1)=-i$, we can continuously defined $\arg (p(z))$ such that $\arg (p(-1))=7 \pi+\frac{\pi}{2}=\frac{15}{2} \pi$. For $z \in(-1,0], p(z)$ lies in the fourth quadrant. Since $p(0)=1$, we end up with $\arg (p(0))=8 \pi$ when we goes around the boundary of the half disc once.

So $p(z)=z^{7}+i z^{5}+1$ has four zeros on the upper half plane.
8. (12 points) Let $f:\{|z|<1+\epsilon\} \rightarrow \mathbb{C}$ be an analytic function for some $\epsilon>0$. Suppose that $|f(z)| \leq 1$ for any $z \in\{|z| \leq 1\}$, please follow the following steps and show that there exists $z_{0} \in\{|z| \leq 1\}$ such that $f\left(z_{0}\right)=z_{0}$.
(This is the complex analysis version of the Brouwer fixed point theorem.)
(1) (2 points) For any $n \geq 1$, let $f_{n}(z)=\left(1-\frac{1}{n}\right) f(z)$. Please prove that $\left\{f_{n}\right\}$ uniformly converges to f on $\{|z| \leq 1\}$.

For any $\epsilon>0$, take $N=\left[\frac{1}{\epsilon}\right]$. Then for any $n>N$ and any $z \in\{|z| \leq 1\}$, we have

$$
\left|f_{n}(z)-f(z)\right|=\frac{1}{n}|f(z)| \leq \frac{1}{n}<\epsilon
$$

So $\left\{f_{n}\right\}$ uniformly converges to f on $\{|z| \leq 1\}$.
(2) (4 points) For each n, please show that there is a unique $z_{n} \in\{|z|<1\}$ such that $f_{n}\left(z_{n}\right)=z_{n}$.

On the boundary of the disc $\{|z|=1\}$, for any n, we have

$$
|z|=1>1-\frac{1}{n} \geq\left(1-\frac{1}{n}\right)|f(z)|=\left|f_{n}(z)\right| .
$$

So Rouche's theorem implies that $z-f_{n}(z)$ has the same number of zeros in $\{|z|<1\}$ as the function z. Since z has a unique zero in $\{|z|<1\}$, so does $z-f_{n}(z)$. Suppose this unique zero os z_{n}, then clearly $f_{n}\left(z_{n}\right)=z_{n}$ holds.
(3) (5 points) Suppose that $f(z) \neq z$ for any $z \in\{|z|=1\}$, please show that there exists a unique $z_{0} \in\{|z|<1\}$ such that $f\left(z_{0}\right)=z_{0}$. (Hint: you may need to use the sequence of functions $\left\{f_{n}\right\}$.)

Since $f(z) \neq z$ for any $z \in\{|z|=1\}$, the infimum

$$
\delta=\inf \{|f(z)-z|| | z \mid=1\}>0
$$

For any $n>\frac{2}{\delta}$ and any $z \in\{|z|=1\}$, we have

$$
\left|\left(f_{n}(z)-z\right)-(f(z)-z)\right|=\frac{1}{n}|f(z)| \leq \frac{1}{n}<\frac{\delta}{2} \leq \frac{|f(z)-z|}{2} .
$$

In particular, $f_{n}(z)-z \neq 0$ holds.
Since $\frac{1}{2}=\sin \frac{\pi}{6}$, we can continuously define $\arg (f(z)-z)$ and $\arg \left(f_{n}(z)-z\right)$ on $\{|z|=1\}$ such that

$$
\left|\arg (f(z)-z)-\arg \left(f_{n}(z)-z\right)\right| \leq \frac{\pi}{6}
$$

When we go around $\{|z|=1\}$ once, the amount of the change of $\arg (f(z)-$ z) and $\arg \left(f_{n}(z)-z\right)$ are both integer multiples of 2π, so they are actually equal to each other.

This can be written as the mathematical formula

$$
\oint_{|z|=1} \frac{(f(z)-z)^{\prime}}{f(z)-z} \mathrm{~d} z=\oint_{|z|=1} \frac{\left(f_{n}(z)-z\right)^{\prime}}{f_{n}(z)-z} \mathrm{~d} z .
$$

Since $f_{n}(z)-z$ has a unique zero in $\{|z|<1\}$, we have $\oint_{|z|=1} \frac{\left(f_{n}(z)-z\right)^{\prime}}{f_{n}(z)-z} \mathrm{~d} z=$ $2 \pi i$. So $\oint_{|z|=1} \frac{(f(z)-z)^{\prime}}{f(z)-z} \mathrm{~d} z=2 \pi i$ holds, which implies $f(z)-z$ has a unique zero in $\{|z|<1\}$.
(4) (1 point) Without assuming $f(z) \neq z$ on $\{|z|=1\}$, please show that there exists $z_{0} \in\{|z| \leq 1\}$ such that $f\left(z_{0}\right)=z_{0}$.

Suppose that there exists $z_{0} \in\{|z|=1\}$ such that $f\left(z_{0}\right)=z_{0}$, then this is our desired fixed point.

Otherwise, if $f(z) \neq z$ for any $z \in\{|z|=1\}$, subproblem (3) implies that there exists $z_{0} \in\{|z|<1\} \subset\{|z| \leq 1\}$, such that $f\left(z_{0}\right)=z_{0}$.

