• You have 3 hours for the exam.

• The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

• Please use non-programmable calculators only.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

• For true/false questions, fill in the True/False bubble.

• For multiple-choice questions, fill in the bubbles for ALL CORRECT CHOICES (in some cases, there may be more than one). For a question with p points and k choices, every false positive will incur a penalty of $p/(k-1)$ points.

• For short answer questions, unnecessarily long explanations and extraneous data will be penalized. Please try to be terse and precise and do the side calculations on the scratch papers provided.

• Please draw a bounding box around your answer in the Short Answers section. A missed answer without a bounding box will not be regraded.

<table>
<thead>
<tr>
<th>First name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Last name</td>
<td></td>
</tr>
<tr>
<td>SID</td>
<td></td>
</tr>
</tbody>
</table>

For staff use only:

Q1. True/False	/23
Q2. Multiple Choice Questions	/36
Q3. Short Answers	/26
Total	/85
Q1. [23 pts] True/False

(a) [1 pt] Solving a non-linear separation problem with a hard margin Kernelized SVM (Gaussian RBF Kernel) might lead to overfitting.
 ○ True ○ False

(b) [1 pt] In SVMs, the sum of the Lagrange multipliers corresponding to the positive examples is equal to the sum of the Lagrange multipliers corresponding to the negative examples.
 ○ True ○ False

(c) [1 pt] SVMs directly give us the posterior probabilities \(P(y = 1|x) \) and \(P(y = -1|x) \).
 ○ True ○ False

(d) [1 pt] \(V(X) = E[X]^2 - E[X^2] \)
 ○ True ○ False

(e) [1 pt] In the discriminative approach to solving classification problems, we model the conditional probability of the labels given the observations.
 ○ True ○ False

(f) [1 pt] In a two class classification problem, a point on the Bayes optimal decision boundary \(x^* \) always satisfies \(P(y = 1|x^*) = P(y = 0|x^*) \).
 ○ True ○ False

(g) [1 pt] Any linear combination of the components of a multivariate Gaussian is a univariate Gaussian.
 ○ True ○ False

(h) [1 pt] For any two random variables \(X \sim \mathcal{N}(\mu_1, \sigma_1^2) \) and \(Y \sim \mathcal{N}(\mu_2, \sigma_2^2) \), \(X + Y \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2) \).
 ○ True ○ False

(i) [1 pt] Stanford and Berkeley students are trying to solve the same logistic regression problem for a dataset. The Stanford group claims that their initialization point will lead to a much better optimum than Berkeley’s initialization point. Stanford is correct.
 ○ True ○ False

(j) [1 pt] In logistic regression, we model the odds ratio (\(\frac{p}{1-p} \)) as a linear function.
 ○ True ○ False

(k) [1 pt] Random forests can be used to classify infinite dimensional data.
 ○ True ○ False

(l) [1 pt] In boosting we start with a Gaussian weight distribution over the training samples.
 ○ True ○ False

(m) [1 pt] In Adaboost, the error of each hypothesis is calculated by the ratio of misclassified examples to the total number of examples.
 ○ True ○ False

(n) [1 pt] When \(k = 1 \) and \(N \to \infty \), the kNN classification rate is bounded above by twice the Bayes error rate.
 ○ True ○ False

(o) [1 pt] A single layer neural network with a sigmoid activation for binary classification with the cross entropy loss is exactly equivalent to logistic regression.
 ○ True ○ False
(p) [1 pt] The loss function for LeNet5 (the convolutional neural network by LeCun et al.) is convex.
 ○ True ○ False

(q) [1 pt] Convolution is a linear operation i.e. \((\alpha f_1 + \beta f_2) * g = \alpha f_1 * g + \beta f_2 * g\).
 ○ True ○ False

(r) [1 pt] The k-means algorithm does coordinate descent on a non-convex objective function.
 ○ True ○ False

(s) [1 pt] A 1-NN classifier has higher variance than a 3-NN classifier.
 ○ True ○ False

(t) [1 pt] The single link agglomerative clustering algorithm groups two clusters on the basis of the maximum distance between points in the two clusters.
 ○ True ○ False

(u) [1 pt] The largest eigenvector of the covariance matrix is the direction of minimum variance in the data.
 ○ True ○ False

(v) [1 pt] The eigenvectors of \(AA^T\) and \(A^TA\) are the same.
 ○ True ○ False

(w) [1 pt] The non-zero eigenvalues of \(AA^T\) and \(A^TA\) are the same.
 ○ True ○ False
Q2. [36 pts] Multiple Choice Questions

(a) [4 pts] In linear regression, we model \(P(y|x) \sim \mathcal{N}(w^T x + w_0, \sigma^2) \). The irreducible error in this model is ________.

- \(\sigma^2 \)
- \(E[(y - E[y|x])^2|x] \)
- \(E[y|x] \)

(b) [4 pts] Let \(S_1 \) and \(S_2 \) be the set of support vectors and \(w_1 \) and \(w_2 \) be the learnt weight vectors for a linearly separable problem using hard and soft margin linear SVMs respectively. Which of the following are correct?

- \(S_1 \subseteq S_2 \)
- \(w_1 = w_2 \)
- \(S_1 \) may not be a subset of \(S_2 \)
- \(w_1 \) may not be equal to \(w_2 \).

(c) [4 pts] Ordinary least-squares regression is equivalent to assuming that each data point is generated according to a linear function of the input plus zero-mean, constant-variance Gaussian noise. In many systems, however, the noise variance is itself a positive linear function of the input (which is assumed to be non-negative, i.e., \(x \geq 0 \)). Which of the following families of probability models correctly describes this situation in the univariate case?

- \(P(y|x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y-(w_0+w_1x))^2}{2\sigma^2}\right) \)
- \(P(y|x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y-(w_0+w_1^2x))^2}{2\sigma^2}\right) \)
- \(P(y|x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y-(w_0+w_1\sigma^2x))^2}{2\sigma^2}\right) \)
- \(P(y|x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(\frac{-(y-(w_0+w_1\sigma^2x))^2}{2\sigma^2}\right) \)

(d) [3 pts] The left singular vectors of a matrix \(A \) can be found in ________.

- Eigenvectors of \(AA^T \)
- Eigenvectors of \(A^T A \)
- Eigenvectors of \(A^2 \)
- Eigenvectors of \(AA^T \)

(e) [3 pts] Averaging the output of multiple decision trees helps ________.

- Increase bias
- Decrease bias
- Increase variance
- Decrease variance

(f) [4 pts] Let \(A \) be a symmetric matrix and \(S \) be the matrix containing its eigenvectors as column vectors, and \(D \) a diagonal matrix containing the corresponding eigenvalues on the diagonal. Which of the following are true:

- \(AS = SD \)
- \(AS = DS \)
- \(SA = DS \)
- \(AS = DS^T \)

(g) [4 pts] Consider the following dataset: \(A = (0, 2), B = (0, 1) \) and \(C = (1, 0) \). The k-means algorithm is initialized with centers at \(A \) and \(B \). Upon convergence, the two centers will be at

- \(A \) and \(C \)
- \(C \) and the midpoint of \(AB \)
- \(A \) and the midpoint of \(BC \)
- \(A \) and \(B \)
(h) [3 pts] Which of the following loss functions are convex?

- Misclassification loss
- Logistic loss
- Hinge loss
- Exponential Loss \(e^{(-yf(x))} \)

(i) [3 pts] Consider \(T_1 \), a decision stump (tree of depth 2) and \(T_2 \), a decision tree that is grown till a maximum depth of 4. Which of the following is/are correct?

- \(\text{Bias}(T_1) < \text{Bias}(T_2) \)
- \(\text{Bias}(T_1) > \text{Bias}(T_2) \)
- \(\text{Variance}(T_1) < \text{Variance}(T_2) \)
- \(\text{Variance}(T_1) > \text{Variance}(T_2) \)

(j) [4 pts] Consider the problem of building decision trees with \(k \)-ary splits (split one node into \(k \) nodes) and you are deciding \(k \) for each node by calculating the entropy impurity for different values of \(k \) and optimizing simultaneously over the splitting threshold(s) and \(k \). Which of the following is/are true?

- The algorithm will always choose \(k = 2 \)
- The algorithm will prefer high values of \(k \)
- There will be \(k - 1 \) thresholds for a \(k \)-ary split
- This model is strictly more powerful than a binary decision tree.
Q3. [26 pts] Short Answers

(a) [5 pts] Given that \((x_1, x_2)\) are jointly normally distributed with \(\mu = [\mu_1 \; \mu_2]\) and \(\Sigma = [\sigma_{11} \; \sigma_{12}; \sigma_{21} \; \sigma_{22}]\) \((\sigma_{21} = \sigma_{12})\), give an expression for the mean of the conditional distribution \(p(x_1|x_2 = a)\).

(b) [4 pts] The logistic function is given by \(\sigma(x) = \frac{1}{1+e^{-x}}\). Show that \(\sigma'(x) = \sigma(x)(1 - \sigma(x))\).

(c) Let \(X\) have a uniform distribution

\[
p(x; \theta) = \begin{cases} \frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text{otherwise} \end{cases}
\]

Suppose that \(n\) samples \(x_1, \ldots, x_n\) are drawn independently according to \(p(x; \theta)\).

(i) [5 pts] The maximum likelihood estimate of \(\theta\) is \(x(n) = \max(x_1, x_2, \ldots, x_n)\). Show that this estimate of \(\theta\) is biased.

(ii) [2 pts] Give an expression for an unbiased estimator of \(\theta\).
(d) [5 pts] Consider the problem of fitting the following function to a dataset of 100 points \(\{(x_i, y_i)\}, i = 1 \ldots 100: \)

\[
y = \alpha \cos(x) + \beta \sin(x) + \gamma
\]

This problem can be solved using the least squares method with a solution of the form:

\[
\begin{bmatrix}
\alpha \\
\beta \\
\gamma
\end{bmatrix} = (X^T X)^{-1} X^T Y
\]

What are \(X \) and \(Y \)?

\[X = \quad Y = \]

(e) [5 pts] Consider the problem of binary classification using the Naive Bayes classifier. You are given two dimensional features \((X_1, X_2)\) and the categorical class conditional distributions in the tables below. The entries in the tables correspond to \(P(X_1 = x_1 | C_i) \) and \(P(X_2 = x_2 | C_i) \) respectively. The two classes are equally likely.

\[
\begin{array}{c|cc}
X_1 = & C_1 & C_2 \\
\hline
-1 & 0.2 & 0.3 \\
0 & 0.4 & 0.6 \\
1 & 0.4 & 0.1 \\
\end{array}
\quad
\begin{array}{c|cc}
X_2 = & C_1 & C_2 \\
\hline
-1 & 0.4 & 0.1 \\
0 & 0.5 & 0.3 \\
1 & 0.1 & 0.6 \\
\end{array}
\]

Given a data point \((-1, 1)\), calculate the following posterior probabilities:

\[
P(C_1 | X_1 = -1, X_2 = 1) =
\]

\[
P(C_2 | X_1 = -1, X_2 = 1) =
\]