- You have 3 hours for the exam.
- The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.
- Please use non-programmable calculators only.
- Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
- For true/false questions, fill in the True/False bubble.
- For multiple-choice questions, fill in the bubbles for ALL CORRECT CHOICES (in some cases, there may be more than one). For a question with p points and k choices, every false positive wil incur a penalty of $p /(k-1)$ points.
- For short answer questions, unnecessarily long explanations and extraneous data will be penalized. Please try to be terse and precise and do the side calculations on the scratch papers provided.
- Please draw a bounding box around your answer in the Short Answers section. A missed answer without a bounding box will not be regraded.

First name	
Last name	
SID	

For staff use only:

Q1.	True/False	$/ 23$
Q2.	Multiple Choice Questions	$/ 36$
Q3.	Short Answers	$/ 26$
	Total	$/ 85$

Q1. [23 pts] True/False

(a) [1 pt] Solving a non linear separation problem with a hard margin Kernelized SVM (Gaussian RBF Kernel) might lead to overfitting.True False
(b) [1 pt] In SVMs, the sum of the Lagrange multipliers corresponding to the positive examples is equal to the sum of the Lagrange multipliers corresponding to the negative examples.TrueFalse
(c) $[1 \mathrm{pt}]$ SVMs directly give us the posterior probabilities $P(y=1 \mid x)$ and $P(y=-1 \mid x)$.True \bigcirc False
(d) $[1 \mathrm{pt}] V(X)=E[X]^{2}-E\left[X^{2}\right]$True \bigcirc False
(e) $[1 \mathrm{pt}]$ In the discriminative approach to solving classification problems, we model the conditional probability of the labels given the observations.TrueFalse
(f) [1 pt] In a two class classification problem, a point on the Bayes optimal decision boundary x^{*} always satisfies $P\left(y=1 \mid x^{*}\right)=P\left(y=0 \mid x^{*}\right)$.
\bigcirc True \bigcirc False
$(\mathrm{g})[1 \mathrm{pt}]$ Any linear combination of the components of a multivariate Gaussian is a univariate Gaussian.
\bigcirc True \bigcirc False
(h) $[1 \mathrm{pt}]$ For any two random variables $X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right), X+Y \sim \mathcal{N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.
\bigcirc True \bigcirc False
(i) [1 pt] Stanford and Berkeley students are trying to solve the same logistic regression problem for a dataset. The Stanford group claims that their initialization point will lead to a much better optimum than Berkeley's initialization point. Stanford is correct.
\bigcirc True \bigcirc False
(j) $[1 \mathrm{pt}]$ In logistic regression, we model the odds ratio $\left(\frac{p}{1-p}\right)$ as a linear function.
\bigcirc True \bigcirc False
(k) [1 pt] Random forests can be used to classify infinite dimensional data.
\bigcirc True \bigcirc False
(l) $[1 \mathrm{pt}]$ In boosting we start with a Gaussian weight distribution over the training samples.
\bigcirc True \bigcirc False
(\mathbf{m}) [1 pt] In Adaboost, the error of each hypothesis is calculated by the ratio of misclassified examples to the total number of examples.
\bigcirc True \bigcirc False
(n) [1 pt] When $k=1$ and $N \rightarrow \infty$, the kNN classification rate is bounded above by twice the Bayes error rate.
\bigcirc True \bigcirc False
(o) [1 pt] A single layer neural network with a sigmoid activation for binary classification with the cross entropy loss is exactly equivalent to logistic regression.
\bigcirc True \bigcirc False
(\mathbf{p}) $[1 \mathrm{pt}]$ The loss function for LeNet5 (the convolutional neural network by LeCun et al.) is convex.TrueFalse
(q) $[1 \mathrm{pt}]$ Convolution is a linear operation i.e. $\left(\alpha f_{1}+\beta f_{2}\right) * g=\alpha f_{1} * g+\beta f_{2} * g$.TrueFalse
(\mathbf{r}) $[1 \mathrm{pt}]$ The k-means algorithm does coordinate descent on a non-convex objective function.
\bigcirc True \bigcirc False
(s) $[1 \mathrm{pt}]$ A 1-NN classifier has higher variance than a 3-NN classifier.TrueFalse
(t) [1 pt] The single link agglomerative clustering algorithm groups two clusters on the basis of the maximum distance between points in the two clusters.
\bigcirc True \bigcirc False
$(\mathbf{u})[1 \mathrm{pt}]$ The largest eigenvector of the covariance matrix is the direction of minimum variance in the data.False
(v) $[1 \mathrm{pt}]$ The eigenvectors of $A A^{T}$ and $A^{T} A$ are the same.
\bigcirc True \bigcirc False
(w) [1 pt] The non-zero eigenvalues of $A A^{T}$ and $A^{T} A$ are the same.
\bigcirc True \bigcirc False

Q2. [36 pts] Multiple Choice Questions

(a) [4 pts] In linear regression, we model $P(y \mid x) \sim \mathcal{N}\left(w^{T} x+w_{0}, \sigma^{2}\right)$. The irreducible error in this model is
\qquad -.
$\bigcirc \sigma^{2}$
$\bigcirc[(y-E[y \mid x]) \mid x]$
$\bigcirc E\left[(y-E[y \mid x])^{2} \mid x\right]$
$\bigcirc E[y \mid x]$
(b) [4 pts] Let S_{1} and S_{2} be the set of support vectors and w_{1} and w_{2} be the learnt weight vectors for a linearly separable problem using hard and soft margin linear SVMs respectively. Which of the following are correct?
$\bigcirc S_{1} \subset S_{2}$
$\bigcirc S_{1}$ may not be a subset of S_{2}
$\bigcirc w_{1}=w_{2}$
$\bigcirc w_{1}$ may not be equal to w_{2}.
(c) [4 pts] Ordinary least-squares regression is equivalent to assuming that each data point is generated according to a linear function of the input plus zero-mean, constant-variance Gaussian noise. In many systems, however, the noise variance is itself a positive linear function of the input (which is assumed to be non-negative, i.e., $x \geq 0$). Which of the following families of probability models correctly describes this situation in the univariate case?
$P(y \mid x)=\frac{1}{\sigma \sqrt{2 \pi x}} \exp \left(-\frac{\left(y-\left(w_{0}+w_{1} x\right)\right)^{2}}{2 x \sigma^{2}}\right)$
$\bigcirc P(y \mid x)=\frac{1}{\sigma \sqrt{2 \pi x}} \exp \left(-\frac{\left(y-\left(w_{0}+\left(w_{1}+\sigma^{2}\right) x\right)\right)^{2}}{2 \sigma^{2}}\right)$
$\bigcirc P(y \mid x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{\left(y-\left(w_{0}+w_{1} x\right)\right)^{2}}{2 \sigma^{2}}\right)$
$\bigcirc P(y \mid x)=\frac{1}{\sigma x \sqrt{2 \pi}} \exp \left(-\frac{\left(y-\left(w_{0}+w_{1} x\right)\right)^{2}}{2 x^{2} \sigma^{2}}\right)$
(d) $[3 \mathrm{pts}]$ The left singular vectors of a matrix A can be found in \qquad .
\bigcirc Eigenvectors of $A A^{T}$
Eigenvectors of A^{2}
Eigenvectors of $A^{T} A$
Eigenvalues of $A A^{T}$
(e) $[3 \mathrm{pts}]$ Averaging the output of multiple decision trees helps \qquad .Increase bias
Increase variance
\bigcirc Decrease biasDecrease variance
(f) [4 pts] Let A be a symmetric matrix and S be the matrix containing its eigenvectors as column vectors, and D a diagonal matrix containing the corresponding eigenvalues on the diagonal. Which of the following are true:
$A S=S D$
$\bigcirc S A=D S$
$\bigcirc A S=D S$
$\bigcirc S=D S^{T}$
(g) [4 pts] Consider the following dataset: $A=(0,2), B=(0,1)$ and $C=(1,0)$. The k-means algorithm is initialized with centers at A and B. Upon convergence, the two centers will be at
$\bigcirc A$ and C
C and the midpoint of $A B$

○ A and the midpoint of $B C$
A and B
(h) [3 pts] Which of the following loss functions are convex?
\bigcirc
Misclassification lossHinge lossLogistic lossExponential Loss $\left(e^{(-y f(x))}\right)$
(i) $[3 \mathrm{pts}]$ Consider T_{1}, a decision stump (tree of depth 2) and T_{2}, a decision tree that is grown till a maximum depth of 4 . Which of the following is/are correct?
$\bigcirc \operatorname{Bias}\left(T_{1}\right)<\operatorname{Bias}\left(T_{2}\right)$$\operatorname{Variance}\left(T_{1}\right)<\operatorname{Variance}\left(T_{2}\right)$$\operatorname{Bias}\left(T_{1}\right)>\operatorname{Bias}\left(T_{2}\right)$$\operatorname{Variance}\left(T_{1}\right)>\operatorname{Variance}\left(T_{2}\right)$
(j) [4 pts] Consider the problem of building decision trees with k-ary splits (split one node into k nodes) and you are deciding k for each node by calculating the entropy impurity for different values of k and optimizing simultaneously over the splitting threshold(s) and k. Which of the following is/are true?

The algorithm will always choose $k=2$

The algorithm will prefer high values of kThere will be $k-1$ thresholds for a k-ary splitThis model is strictly more powerful than a binary decision tree.

Q3. [26 pts] Short Answers

(a) [5 pts] Given that $\left(x_{1}, x_{2}\right)$ are jointly normally distributed with $\mu=\left[\begin{array}{l}\mu_{1} \\ \mu_{2}\end{array}\right]$ and $\Sigma=\left[\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2}\end{array}\right]\left(\sigma_{21}=\sigma_{12}\right)$, give an expression for the mean of the conditional distribution $p\left(x_{1} \mid x_{2}=a\right)$.
(b) $[4 \mathrm{pts}]$ The logistic function is given by $\sigma(x)=\frac{1}{1+e^{-x}}$. Show that $\sigma^{\prime}(x)=\sigma(x)(1-\sigma(x))$.
(c) Let X have a uniform distribution

$$
p(x ; \theta)= \begin{cases}\frac{1}{\theta} & 0 \leq x \leq \theta \\ 0 & \text { otherwise }\end{cases}
$$

Suppose that n samples x_{1}, \ldots, x_{n} are drawn independently according to $p(x ; \theta)$.
(i) [5 pts] The maximum likelihood estimate of θ is $x_{(n)}=\max \left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Show that this estimate of θ is biased.
(ii) $[2 \mathrm{pts}]$ Give an expression for an unbiased estimator of θ.
(d) $[5 \mathrm{pts}]$ Consider the problem of fitting the following function to a dataset of 100 points $\left\{\left(x_{i}, y_{i}\right)\right\}, i=1 \ldots 100$:

$$
y=\alpha \cos (x)+\beta \sin (x)+\gamma
$$

This problem can be solved using the least squares method with a solution of the form:

$$
\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=\left(X^{T} X\right)^{-1} X^{T} Y
$$

What are X and Y ?
$X=$
$Y=$
(e) [5 pts] Consider the problem of binary classification using the Naive Bayes classifier. You are given two dimensional features $\left(X_{1}, X_{2}\right)$ and the categorical class conditional distributions in the tables below. The entries in the tables correspond to $P\left(X_{1}=x_{1} \mid C_{i}\right)$ and $P\left(X_{2}=x_{2} \mid C_{i}\right)$ respectively. The two classes are equally likely.

$X_{1}=$ Class	C_{1}	C_{2}
-1	0.2	0.3
0	0.4	0.6
1	0.4	0.1

$X_{2}=$ Class	C_{1}	C_{2}
-1	0.4	0.1
0	0.5	0.3
1	0.1	0.6

Given a data point $(-1,1)$, calculate the following posterior probabilities:

$$
P\left(C_{1} \mid X_{1}=-1, X_{2}=1\right)=
$$

$P\left(C_{2} \mid X_{1}=-1, X_{2}=1\right)=$

