Lecture 1, Midterm 2, Problem 1:

$$
\rho=3.0 \cdot 10^{-21} \mathrm{~kg} / \mathrm{m}^{3}
$$

Speliotopoulos Midterm 2, Fall 2010
$V_{\text {dust }}=0$ (in the reference frame of an outside observer)
In the spacecraft's frame:

$$
\left.\begin{array}{l}
v_{\text {dust }}^{i}=-v_{\text {craft }} \\
v_{\text {dust }}^{f}=+v_{\text {craft }}
\end{array}\right\} \Delta v=2 v_{\text {craft }}
$$

The momentum imparted to the dust is:

$$
\Delta p=m_{\text {dust }} \cdot 2 v_{\text {craft }}
$$

The instantaneous change in p depends on the velocity of the craft and on the (instantaneous) rate at which the craft collides with the dust:

$$
\begin{aligned}
& \underset{V_{\text {craft }}}{\text { an }} \quad \frac{d m_{\text {dust }}}{d t}=\rho A v_{\text {craft }} \\
& \text { his is the force an th. }
\end{aligned}
$$

This is the force on the dust. The force on the craft, exerted by the dust, will be equal and opposite, by Newton's $3^{\text {rd }}$ Law:

$$
\begin{aligned}
& F_{\text {craft }}=-F_{\text {dust }}=-2 \rho A v_{\text {craft }}^{2}=m_{\text {craft }} \frac{d v_{\text {craft }}}{d t} \\
& \text { nange in notation: }
\end{aligned}
$$

* change in notation: "craft" subscripts \rightarrow " c " subscripts

$$
\begin{aligned}
& -2 \rho A v_{c}^{2}=m_{c} \frac{d v_{c}}{d t}=m_{c} v_{c} \frac{d v_{c}}{d x} \quad\left(\frac{d v}{d t}=v \frac{d v}{d x}\right. \text { j provided) } \\
& -2 \rho A v_{c}=m_{c} \frac{d v_{c}}{} \text { use senarat" subscripts }
\end{aligned}
$$

- $2 \rho A v_{c}=m_{c} \frac{d v_{c}}{d x}$ use separation of variables:
$\int_{v_{i}}^{v_{f}} \frac{d v_{c}}{v_{c}}=\int_{0}^{x_{f}} \frac{2 \rho A}{m_{c}} d x$ (take $x=0$ as the point where voyager enters the galactic disk)

$$
\begin{aligned}
\ln \left|\frac{v_{f}}{v_{i}}\right| & =-\frac{2 \rho A}{m_{c}} x_{F}, \quad v_{f}=\frac{1}{2} v_{i} \quad \text { galactic disk) } \\
\Rightarrow \ln \left(\frac{1}{2}\right) & =-\frac{2 \rho A}{m_{c}} x_{F} \Rightarrow x_{f}=\frac{-m_{c}}{2 \rho A} \ln \left(\frac{1}{2}\right)=8.34 \cdot 10^{22} \mathrm{~m}
\end{aligned}
$$

1 Problem 2

First the block must overcome static friction to start moving. k has to be large enough to do this.

$$
\begin{align*}
k L / 2+k L / 2 & >2 \mu m g \tag{1}\\
k & >2 \mu m g / L \tag{2}
\end{align*}
$$

The next step is to find out where it turns around using energy. Call that distance from the center x .

$$
\begin{aligned}
E_{i} & =k L^{2} / 4 \\
E_{f} & =1 / 2 k x^{2}+1 / 2 k x^{2}+\mu m g L / 2+\mu m g x \\
E_{i} & =E_{f} \\
k(L / 2)^{2}-k x^{2} & =\mu m g(L / 2+x) \\
k(L / 2+x)(L / 2-x) & =\mu m g(L / 2+x) \\
k(L / 2-x) & =\mu m g \\
x & =-\mu m g / k+L / 2
\end{aligned}
$$

Does it turn around or is that momentary stop its last?

$$
\begin{aligned}
k x+k x=2 k x=2 k(L / 2-\mu m g / k) & =k L-2 \mu m g>2 \mu m g \\
k & >4 \mu m g / L
\end{aligned}
$$

$L / 2+x$ still isn't far enough so we must require k to be bigger than $4 \mu m g / L$. Next stop at position y left of center (Total distance travelled $\mathrm{x}+\mathrm{y}$ between the two stops)

$$
\begin{aligned}
E_{i} & =k x^{2} \\
E_{f} & =1 / 2 k y^{2}+1 / 2 k y^{2}+\mu m g x+\mu m g y \\
E_{i} & =E_{f} \\
k x^{2}-k y^{2} & =\mu m g(y+x) \\
k(y+x)(x-y) & =\mu m g(y+x) \\
k(x-y) & =\mu m g \\
y & =-\mu m g / k+x \\
y & =L / 2-2 \mu m g / k
\end{aligned}
$$

y is clearly less than x so in order to overcome static friction, k would need to be even bigger than the bounds already placed on it. Therefore if it has travelled far enough already we don't need to bounce again.

Has the block travelled far enough yet?

$$
\begin{array}{r}
d=L / 2+x+x+y \\
d=L / 2+L-2 \mu m g / k+L / 2-2 \mu m g / k \\
d=2 L-4 \mu m g / k
\end{array}
$$

So if $k>4 \mu m g / L$ the block will move from $-\mathrm{L} / 2$ to x and then to y covering a distance that is bigger than L. If $k=4 \mu m g / L$ it ends up coming to rest in the center.

Problem 3

Step 1: Energy Conservation (1 point)

$$
\begin{aligned}
m g h & =\frac{1}{2} m v_{0}^{2} \\
v_{0} & =\sqrt{2 g h}
\end{aligned}
$$

Step 2: Elastic Collision (11 points)
Generdly:
Energy equation: $\frac{1}{2} m_{1} v_{01}^{2}+\frac{1}{2} m_{2} v_{02}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
Momentum equation: $m_{1} v_{01}+m_{2} v_{02}=m_{1} v_{1}+m_{2} v_{2}$

$$
\text { Energy } \rightarrow m_{2}\left(v_{02}^{2}-v_{2}^{2}\right)=m_{1}\left(v_{1}^{2}-v_{01}^{2}\right)
$$

Momentum $\rightarrow m_{2}\left(v_{02}-v_{2}\right)=m_{1}\left(v_{1}-v_{01}\right)$ divide

$$
\begin{equation*}
v_{0_{2}}+v_{2}=v_{1}+v_{01} \tag{1}
\end{equation*}
$$

Solve along with onowention equation

$$
\begin{equation*}
m_{1} v_{01}+m_{2} v_{02} \mp m_{1} v_{1}+m_{2} v_{2} \tag{2}
\end{equation*}
$$

For this case: $\quad v_{01}=\sqrt{2 g h}=v_{0} \quad v_{02}=0 \quad m_{1}=m \quad m_{2}=7 m$
(1)

$$
v_{2}=v_{1}+v_{0}
$$

(2) $m v_{0}=m v_{1}+7 m v_{2}$
(1) \rightarrow (2)

$$
\begin{aligned}
& M v_{0}=\underline{v} v_{1}+7 h v_{1}+7 h v_{0} \\
& -6 v_{0}=8 v_{1} \\
& v_{1}=-\frac{3}{4} v_{0}=-\frac{3}{4} \sqrt{2 g h}=-1.66 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}=V_{1}+V_{0} \\
& V_{2}=\frac{V_{0}}{4}=\frac{1}{4} \sqrt{2 g h}=.55 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Step 3: Going bock up hill and turning around (3 points)
There is no friction so the smoll moss goes up the hill, turns around and comes buck with the some speed but opposite direction.

Now $\quad v_{1}=\frac{3}{4} v_{0}$

$$
V_{1}>V_{2}
$$

Therefore there is a second collision.
(1) $v_{2}+v_{2}{ }^{\prime}=v_{1}{ }^{\prime}+v_{1}$
(5 points)
(2)

$$
m v_{1}+7 \phi v_{2}=m v_{1}^{\prime}+7 m v_{2}^{\prime}
$$

(1) $\rightarrow v_{2}^{\prime}=v_{1}^{\prime}+v_{1}-v_{2}$
substitute

$$
\begin{aligned}
& v_{1}+7 v_{2}=v_{1}^{\prime}+7 v_{1}^{\prime}+7 v_{1}-7 v_{2} \\
& 8 v_{1}^{\prime}=14 v_{2}-6 v_{1} \\
& v_{1}^{\prime}=\frac{7}{4} v_{2}-\frac{3}{4} v_{1}=\frac{7}{16} v_{0}-\frac{9}{16} v_{0}=-\frac{2}{16} v_{0}=-\frac{1}{8} v_{0} \\
& v_{1}^{\prime}=-\frac{1}{8} v_{0} \\
& v_{2}^{\prime}=v_{1}^{\prime}+v_{1}-v_{2}=-\frac{1}{8} v_{0}+\frac{3}{4} v_{0}-\frac{1}{4} v_{0}=\frac{3}{8} v_{0}
\end{aligned}
$$

After the small mass goes back up the hill and down again

$$
V_{1}^{\prime}=\frac{1}{8} v_{0}=\frac{1}{8} \sqrt{2 g h}=0.28 \mathrm{~m} / \mathrm{s} \quad v_{2}^{\prime}=\frac{3}{8} v_{0}=\frac{3}{8} \sqrt{2 g h}=0.83 \mathrm{~m} / \mathrm{s}
$$

$V_{2}^{\prime}>V_{1}^{\prime}$ There are no further collisions.

Problem \#4

FBD for large block:

Big block:

$$
\begin{align*}
& \sum F_{x}=N_{1} \cos \theta-F_{s}=0 \tag{1}\\
& \sum F_{y}=N_{1} \sin \theta-M_{g}+N_{2}=0 \tag{2}
\end{align*}
$$

small block:

$$
\begin{align*}
& \sum F_{R}=N_{1}+m g \sin \theta=\frac{m v^{2}}{R} \\
& E_{i}=m g R+\frac{1}{2} m v_{0}^{2} \tag{4}\\
& E_{f}=m g R \sin \theta+\frac{1}{2} m v^{2} \tag{5}
\end{align*}
$$

Combining (4) and (5) $\left(E_{i}=E_{5}\right): m g R-m g R \sin \theta=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}$

$$
\begin{equation*}
\frac{m v_{0}^{2}}{R}+2 m g(1-\sin \theta)=\frac{m v^{2}}{R} \tag{6}
\end{equation*}
$$

combming (6) and (3): $N_{1}+m g \sin \theta=\frac{m \nu^{2}}{R}=\frac{m v_{0}^{2}}{R}+2 m g(1-\sin \theta)$
(7) becomes $N_{1}=m g$. $N_{0}^{2}=g R$

From (2) $N_{2}=m g \sin \theta=3 m g(1-\sin \theta)$
We need $N_{1} \sin \theta=M g-3 m g \sin \theta(1-\sin \theta)$
We need $f_{S}=N_{1} \cos \theta$ (equation 1), so $\mu_{S} N_{2} \geqslant N_{1} \cos \theta$

$$
\begin{gather*}
\mu_{s} \geqslant \frac{3 m g \cos \theta(1-\sin \theta)}{M g-3 m g \sin \theta(1-\sin \theta)} \tag{8}\\
\mu_{s} \geqslant \frac{\cos \theta(1-\sin \theta)}{\frac{M}{3 m}-\sin \theta(1-\sin \theta)}
\end{gather*}
$$

Now, $\frac{M}{m}=3$, so $\frac{M}{3 m}=1$ and (9) becomes:

$$
\mu_{s} \geqslant \frac{\cos \theta(1-\sin \theta) \text { Speliotopoulos Midterm 2, Fall } 2010}{1-\sin \theta(1-\sin \theta)}
$$

(10) must be satisfied for all values of θ, but μ_{s} is a constant, so $\mu_{s} \geqslant \max (f(\theta))$ where

$$
f(\theta)=\frac{\cos \theta(1-\sin \theta)}{1-\sin \theta(1-\sin \theta)}
$$

Let us maximize $f(\theta)$:

$$
\begin{aligned}
& \frac{d f}{d \theta}=\frac{d}{d \theta}\left[\frac{\cos \theta}{\frac{1}{1-\sin \theta}-\sin \theta}\right]=0 \\
& 0=\frac{-\sin \theta}{\frac{1}{1-\sin \theta}-\sin \theta}-\frac{\cos \theta}{\left(\frac{1}{1-\sin \theta}-\sin \theta\right)^{2}}\left(-\cos \theta+\frac{\cos \theta}{(1-\sin \theta)^{2}}\right) \\
& 0=-\sin \theta\left(\frac{1}{1-\sin \theta}-\sin \theta\right)-\cos \theta\left(-\cos \theta+\frac{\cos \theta}{(1-\sin \theta)^{2}}\right) \\
& 0=\frac{-\sin \theta}{1-\sin \theta}+\sin ^{2} \theta+\cos ^{2} \theta-\frac{\cos ^{2} \theta}{(1-\sin \theta)^{2}} \\
& 0=-\sin \theta(1-\sin \theta)+(1-\sin \theta)^{2}-\cos ^{2} \theta \\
& 0=-\sin \theta+\sin ^{2} \theta+1-2 \sin \theta+\sin ^{2} \theta-\cos ^{2} \theta \\
& 0=-3 \sin \theta+3 \sin ^{2} \theta \\
& \sin \theta(1-\sin \theta)=0
\end{aligned}
$$

Either $\sin \theta=0$ or $\sin \theta=1$

$$
\theta=0 \quad \text { or } \quad \theta=\frac{\pi}{2}
$$

$\theta=\frac{\pi}{2}$ clearly is not a maximum for $f(\theta)$.

$$
f(0)=\frac{1(1-0)}{1-0(1-0)}=1
$$

so $\max (f(\theta))=1$

$$
\therefore \mu_{s} \geqslant 1,\left(\mu_{s}\right)_{\min }=1
$$

Problem \#5
Let us define V : velocity of
Speliotopoulos Midterm 2, Fall 2010
U : velocity of large block in figure B
u^{\prime} : velocity of small block in figure B when it reaches the top of the circle
User: velocity of small block in figure B when It reaches the top of the circle, relative to the big block.
There are no extemal forces acting in the x-direction after the small blocks are launched, and so the center of mass travels at constant velocity:

$$
\begin{align*}
m v_{0} & =m V+M V \tag{iB}\\
V & =\frac{m\left(V_{0}-v\right)}{M}
\end{align*}
$$

$$
\begin{align*}
m u & =m u^{\prime}+M u \\
u & =\frac{\left.m(u-u)^{\prime}\right)}{M}
\end{align*}
$$

at the top, the normal forces satisty:

$$
\begin{gather*}
N_{A}+m g=\frac{m v_{0}^{2}}{R}(3 A) \quad N_{B}+m g=\frac{m u_{r e l}^{2}}{R} \tag{3A}\\
u_{r e l}=u_{m / M}=u^{\prime}-u
\end{gather*}
$$

In order for the large blocks to just leave the table,

$$
\begin{align*}
& \quad N_{A}=N_{B}=M g \text { (5) } \\
& (M+m) g=\frac{m v_{0}^{2}}{R}(6 a \\
& g R=\frac{V_{0}^{2} m}{M+m}
\end{align*}
$$

Energy is conserved in both figures:

$$
\begin{array}{lc}
E_{i, A}=E_{f, A} & E_{i, B}=E_{f, B} \\
2 m g R+\frac{1}{2} m v_{0}^{2}=\frac{1}{2} m v^{2}+\frac{1}{2} M v^{2}(8 a & \frac{1}{2} m u^{2}=2 m g R+\frac{1}{2} m u^{12}+\frac{1}{2} M u^{2} \\
u_{s e}(B),(2 A),(2 B) \text { and simplify: } & \tag{142}\\
\frac{4 m^{2} v_{0}^{2}}{m+M}+m v_{0}^{2}=m v^{2}+\frac{M m^{2}\left(v_{0}-v\right)^{2}}{M^{2}} & m u^{2}=\frac{4 m^{2} v_{0}^{2}}{m+M}+m u^{2}+\frac{1}{2} M\left(u^{1}-u_{r e 1}\right)^{2}
\end{array}
$$

Define $x=\frac{m}{M}$, and continue simplifying:

$$
\begin{align*}
& \frac{4 x v_{0}^{2}}{x+1}+v_{0}^{2}=v^{2}+x v_{0}^{2}-2 x v_{0} v+x \\
& 0=(1+x) v^{2}-2 x v_{0} v+v_{0}^{2}\left(x-1-\frac{4 x}{x+1}\right) \tag{10}\\
& v=\frac{2 x v_{0} \pm \sqrt{4 x^{2} v_{0}^{2}+4(1+x)\left(\frac{4 x}{x+1}+1-x\right)}}{2(1+x)} \\
& \frac{v}{v_{0}}=\frac{x \pm \sqrt{x^{2}+4 x+1-x^{2}}}{1+x} \\
& \frac{v}{v_{0}}=\frac{x \pm \sqrt{4 x+1}}{1+x} \\
& \frac{v}{v_{0}}=\frac{\frac{5}{16} \pm \sqrt{\frac{5}{4}+1}}{\frac{21}{16}} \\
& \frac{v}{v_{0}}=\frac{\frac{5}{16} \pm \frac{3}{2}}{\frac{21}{6}} \\
& \frac{v}{v_{0}}=\frac{5 \pm 24}{21}
\end{align*}
$$

Speliotopoulos Midterm 2, Fall 2010

$$
0=\frac{1}{x}\left(u^{\prime}-u_{r e 1}\right)^{2}+u^{\prime 2}-u^{2}+\frac{4 x v_{0}^{2}}{x+1}
$$

From $(3 A$ and $(3 B$, we have

$$
u_{\text {rel }}^{2}=v_{0}^{2}
$$

$u_{r e l}=V_{0}$ since $U_{r e 1}<0$ and
(a) becomes:

$$
0=\frac{1}{x}\left(u^{\prime}-v_{0}\right)^{2}+u^{\prime 2}-u^{2}+\frac{4 x v_{0}^{2}}{x+1}
$$

From (4) and (2B), we have:

$$
\begin{aligned}
& u^{\prime}-x\left(u-u^{\prime}\right)=u_{n e}=V_{0} \\
& u^{\prime}(1+x)-x u=V_{0} \\
& u^{\prime}=\frac{V_{0}+x u}{1+x}
\end{aligned}
$$

(9) then becomes:

$$
\begin{align*}
0=\frac{1}{x}\left(\frac{v_{0}+x u}{1+x}-v_{0}\right)^{2} & +\left(\frac{v_{0}+x u}{1+x}\right)^{2}-u^{2} \\
& +\frac{4 x v_{0}^{2}}{x+1} \\
0=\frac{1}{x}\left(\frac{x\left(u-v_{0}\right)}{1+x}\right)^{2} & +\frac{\left(v_{0}+x u\right)^{2}}{(1+x)^{2}}-u^{2} \\
& +\frac{4 x v_{0}^{2}}{x+1} \tag{12}
\end{align*}
$$

$$
\begin{aligned}
& \frac{x u^{2}(1+x)+v_{0}^{2}(1+x)}{(1+x)^{2}}-\frac{u^{2}+x u^{2}}{1+x}+\frac{4 x v_{0}^{2}}{x+1}=0 \\
& x u^{2}+v_{0}^{2}-u^{2}-x u^{2}+4 x v_{0}^{2}
\end{aligned}
$$

$$
\begin{gathered}
x u^{2}+v_{0}^{2}-u^{2}-x u^{2}+4 x v_{0}^{2}=0 \\
u^{2}=v_{0}^{2}(1+4 x)
\end{gathered}
$$

$$
u^{2}=v_{0}^{2}(1+4 x)
$$

$u= \pm V_{0} \sqrt{1+4 x}= \pm V_{0} \frac{3}{2}=-V_{0} \frac{3}{2}$ because $u>0$, but $v_{0}<0$
Thus $\frac{v}{u}=\frac{v}{v_{0}} / \frac{u}{v_{0}}=\frac{-19}{21} /-\frac{3}{2} \quad \therefore \frac{r}{u}=\frac{38}{63}$

