General Instructions:

You must show your work to receive full credit for a correct answer.

Showing your work also facilitates partial credit.

Potentially useful stuff:

Harmonic oscillator Hamiltonian \widetilde{H} in dimensionless variables, and its evals/evecs

$$
\begin{gathered}
\widetilde{H}=-\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}+\frac{1}{2} y^{2} \\
\widetilde{H}\left|\Psi_{n}\right\rangle=\frac{E_{n}}{\hbar \omega}\left|\Psi_{n}\right\rangle=\left(n+\frac{1}{2}\right)\left|\Psi_{n}\right\rangle
\end{gathered}
$$

Harmonic oscillator creation/destruction operators

$$
a^{+}=\frac{1}{\sqrt{2}}\left(y-\frac{\partial}{\partial y}\right) \quad a=\frac{1}{\sqrt{2}}\left(y+\frac{\partial}{\partial y}\right)
$$

Trigonometric Truths for real ϕ and θ

$$
\begin{gathered}
e^{i \phi}=\cos (\phi)+i \sin (\phi) \\
\cos (\phi+\theta)=\cos (\phi) \cos (\theta)-\sin (\phi) \sin (\theta) \\
\tan (\phi)=\frac{\sin (\phi)}{\cos (\phi)} \quad \frac{\partial}{\partial \phi} \sin (\phi)=\cos (\phi) \quad \frac{\partial}{\partial \phi} \cos (\phi)=-\sin (\phi)
\end{gathered}
$$

Problem 1: The Quantum Harmonic Oscillator
(i) (20 points) Show that $y^{2}=\frac{1}{2}\left(a^{+}+a\right)^{2} \quad$ and $\quad \frac{\partial^{2}}{\partial y^{2}}=\frac{1}{2}\left(a^{+}-a\right)^{2}$ (cover page has definitions).
(ii) (15 points) Use what you showed in (i) and the commutator $\left[a, a^{+}\right]=1$ to show $\widetilde{H}=a^{+} a+\frac{1}{2}$ (see cover for \widetilde{H})
(iii) (15 points) In an earlier era, much thinking focused on a supposed medium called the aether. If we assume the aether exists and that it exerts a small drag on moving masses, we may expect it to cause transitions between harmonic oscillator eigenstates. As drag is usually velocity-dependent, we might guess the "molecule-aether" interaction term was given by (with \propto meaning proportional to)

$$
\hat{V}_{m a} \propto \hat{p}^{2} \propto \frac{\partial^{2}}{\partial y^{2}}
$$

Use what you showed in (i) to find the selection rules for such aether-induced transitions.
(Extra Credit) (15 points) Repeat (iii) above but use $\widehat{V}_{m a}=\frac{\partial}{\partial y}$ for the interaction and, instead of creation and destruction operators, use the explicit form of the harmonic oscillator stationary states and the Hermite polynomial relations (both given below, with N_{n} being a constant for normalization).

$$
\begin{gathered}
\left|\Psi_{n}\right\rangle=N_{n} H_{n}(y) \exp \left(-\frac{1}{2} y^{2}\right) \\
2 y H_{n}(y)=H_{n+1}(y)+\frac{\partial H_{n}(y)}{\partial y} \quad \frac{\partial H_{n}(y)}{\partial y}=2 n H_{n-1}(y)
\end{gathered}
$$

Problem 2: Consider the potential below. Also note some useful hyperbolic function definitions.

$$
\begin{aligned}
& \text { Region 1 } \\
& \\
& \hline
\end{aligned}
$$

We will assume $m=\hbar=1$ and $E<W$. Let $\quad k=\sqrt{\frac{1}{2} E} \quad$ and $\quad q=\sqrt{\frac{1}{2}(W-E)}$
(i) (10 points) In region 1, where the general solution is $\Psi_{1}=c_{1} e^{i k x}+d_{1} e^{-i k x}$, show that choosing

$$
c_{1}=-\frac{i}{2} e^{i k} \quad \text { and } \quad d_{1}=\frac{i}{2} e^{-i k}
$$

gives us $\Psi_{1}=\sin (k(x+1))$ and that this Ψ_{1} is well behaved at $x=-1$.
(ii) (10 points) In region 2, where the general solution is $\Psi_{2}=c_{2} e^{-q x}+d_{2} e^{q x}$, show that the choice

$$
c_{2}=-\frac{1}{2} c e^{q} \quad \text { and } \quad d_{2}=\frac{1}{2} c e^{-q}
$$

gives us $\Psi_{2}=c \sinh (q(x-1))$ and that this Ψ_{2} is well behaved at $x=1$.
(iii) (20 points) Use the Ψ_{1} and Ψ_{2} you derived in (i) and (ii) and the conditions they must satisfy at $x=0$ to show that

$$
\frac{\tan (\mathrm{k})}{\mathrm{k}}=-\frac{\tanh (q)}{q}
$$

(iv) (10 points) Use the relation from (iii) and the fact that q and k are both positive to show that a tunneling solution is not possible in this system if E is less than $\frac{1}{2} \pi^{2}$. The following plot may be useful

