
Midterm	exam	CS	189/289,	Fall	2015	
• You	have	80	minutes	for	the	exam.	
• Total	100	points:		

1. True/False:	36	points	(18	questions,	2	points	each).	
2. Multiple-choice	questions:	24	points	(8	questions,	3	points	each).		
3. Three	descriptive	questions	worth	10,	15,	15	points.		

• The	exam	is	closed	book,	closed	notes	except	your	one-page	crib	sheet.	
• No	calculators	or	electronic	items.	
• For	true/false	questions,	fill	in	the	True/False	bubble.	
• 																												For	multiple-choice	questions,	fill	in	the	bubbles	for	ALL	

CORRECT	CHOICES	(in	some	cases,	there	may	be	more	than	one).	NO	
PARTIAL	CREDIT:	all	correct	answers	must	be	checked.	
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For	staff	only	 	
T/F	 /36	
Multiple	choice	 /24	
Problem	I	 /15	
Problem	II	 /15	
Problem	III	 /10	
Total	 /100	



Notation:	

X:	the	training	data	matrix	of	dimension	(N,	d),	of	N	rows	representing	samples	
and	d	columns	representing	features.		

x:	an	input	data	vector	of	dimension	(1,	d)	of	components	xi,	i=1:d.	

xk:	a	training	example	of	dimension	(1,	d)	is	a	row	of	X,	k=1:N.	

w:	weight	vector	of	a	linear	model	of	dimension	(1,	d)	such	that		

f(x)	=	w	xT	=	x	wT=	Si=1:d	wi	xi	

y:	target	vector	of	dimension	(N,	1)	of	components	yk.	

a:	weight	vector	of	dimension	(N,	1)	of	kernel	method	f(x)	=	Sk=1:N	ak	k(x,	xk)	

k(u,	v):	a	kernel	function	(a	similarity	measure	between	two	samples	u	and	v).	

	

True/False	(36	points):	

1. Stochastic	gradient	descent	performs	less	computation	per	update	than	batch	
gradient	descent.	*	

TRUE																																FALSE	
	

2. A	function	is	convex	if	its	Hessian	is	negative	semidefinite.	*	
TRUE																																FALSE	

	
	

3. If	N	<	d,	the	solution	to	XwT	=	y	is	unique.	**	
TRUE																																FALSE	

	

4. A	support	vector	machine	computes	P(y|x).	**	
TRUE																																FALSE	
	



5. Adding	a	ridge	to	XTX	guarantees	that	it	is	invertible.	*	
TRUE																																FALSE	

	
6. Grid	search	is	less	prone	to	being	trapped	in	a	local	minimum	than	other	

heuristic	search	methods.	***	
TRUE																																FALSE	
	

7. The	bootstrap	method	involves	sampling	without	replacement.	*	
TRUE																																FALSE	
	

8. A	non	linearly-separable	training	set	in	a	given	feature	space	can	always	be	
made	linearly-separable	in	another	space.**	

TRUE																																FALSE	

	
9. 	Using	the	kernel	trick,	one	can	get	non-linear	decision	boundaries	using	

algorithms	designed	originally	for	linear	models.	*	
TRUE																																FALSE	

	
10. 	Logistic	regression	cannot	be	kernelized.*	

TRUE																																FALSE	
	
	

11. 	Ridge	regression,	weight	decay,	and	Gaussian	processes	use	the	same	
regularizer:	ǁwǁ2.	*	

TRUE																																FALSE	

	

12. 	Hebb’s	rule	computes	the	centroid	method	solution	if	the	target	values	are	
+1/N1	and	-1/N0	(N1	and	N0	are	the	number	of	examples	of	each	class)**	

TRUE																																FALSE	
	



13. 	Any	kernel	method	can	be	thought	of	as	a	parametric	method	in	a	possibly	
infinite	dimensional	space.*	

TRUE																																FALSE	
	

14. Nearest	neighbors	is	a	parametric	method.*	
TRUE																																FALSE	

	

15. A	symmetric	matrix	is	positive	semidefinite	if	all	its	eigenvalues	are	positive	or	
zero.	**	

TRUE																																FALSE	
	

16. Zero	correlation	between	any	two	random	variables	implies	that	the	two	
random	variables	are	independent.	***	

TRUE																																FALSE	
	

17. The	Linear	Discriminant	Analysis	(LDA)	classifier	computes	the	direction	
maximizing	the	ratio	of	between-class	variance	over	within-class	variance.	***	

TRUE																																FALSE	
	
	

18. If	we	repeat	an	experiment	twice	and	get	p-values	p1	and	p2,	the	minimum	of	
the	two	p-values	is	the	p-value	of	the	overall	experiment.	***	

TRUE																																FALSE	

	

	

	

	

	

	



Multiple	choice	questions	(30	points)	

	
1. You	trained	a	binary	classifier	model	which	gives	very	high	accuracy	on	the	

training	data,	but	much	lower	accuracy	on	validation	data.	The	following	may	
be	true:	*	

o This	is	an	instance	of	overfitting.	
o This	is	an	instance	of	underfitting.		
o The	training	was	not	well	regularized.		
o The	training	and	testing	examples	are	sampled	from	different	

distributions.	
	

2. Okham	in	the	14th	century	is	credited	to	have	stated	that	one	should	“shave	
off	unnecessary	parameters	of	a	model”.	Which	of	the	following	implement	
that	principle:	**	

o Regularization.	
o Maximum	likelihood	estimation.	

o Shrinkage.	
o Empirical	risk	minimization.	

o Feature	selection.	
	

3. Good	practices	to	avoid	overfitting	include:	**	

o Using	a	two	part	cost	function	which	includes	a	regularizer	to	penalize	
model	complexity.	

o Using	a	good	optimizer	to	minimize	error	on	training	data.	

o Building	a	structure	of	nested	subsets	of	models	and	train	learning	
machines	in	each	subset,	starting	from	the	inner	subset,	and	stopping	
when	the	cross-validation	error	starts	increasing.	

o Discarding	50%	of	randomly	chosen	samples.	



	
4. Wrapper	methods	are	hyper-parameter	selection	methods	that:**	

o Should	be	used	whenever	possible	because	they	are	computationally	
efficient.	

o Should	be	avoided	unless	there	are	no	other	options	because	they	are	
always	prone	to	overfitting.	

o Are	useful	mainly	when	the	learning	machines	are	“black	boxes”.	

o Should	be	avoided	altogether.	
	

5. Three	different	classifiers	are	trained	on	the	same	data.	Their	decision	
boundaries	are	shown	below.	Which	of	the	following	statements	are	true? 

	

o The	leftmost	classifier	has	high	robustness,	poor	fit.	

o The	leftmost	classifier	has	poor	robustness,	high	fit.	

o The	rightmost	classifier	has	poor	robustness,	high	fit.	

o The	rightmost	classifier	has	high	robustness,	poor	fit.	
	

6. What	are	support	vectors:	***	

o The	examples	farthest	from	the	decision	boundary.	

o The	only	examples	necessary	to	compute	f(x)	in	an	SVM.	

o The	class	centroids.	
o All	the	examples	that	have	a	non-zero	weight	ak	in	a	SVM.	

	



7. Which	of	the	following	can	only	be	used	when	training	data	are	linearly-
separable?	*	

o Linear	hard-margin	SVM.	

o Linear	Logistic	Regression.	
o Linear	Soft	margin	SVM.		

o The	centroid	method.	

o Parzen	windows.	
	

8. The	number	of	test	examples	needed	to	get	statistically	significant	results	
should	be:	***	

o Larger	if	the	error	rate	is	larger.	
o Larger	if	the	error	rate	is	smaller.	

o It	does	not	matter.	

	

	

	

Three	descriptive	problems	

Problem	I:	Gradient	descent	(15	points).	

Given	N	training	data	points	{(xk,	yk)},	k=1:N,	xk	in	Rd,	and	labels	in	yk	in	{-1,1},	we	
seek	a	linear	discriminant	function	f(x)	=	w.x	optimizing	the	loss	function	L(z)	=	e-z,	
for	z=y	f(x).			

Question	I.1	(3	points)	Is	L(z)	a	large	margin	loss	function?	Justify	your	answer	(a	
graphical	justification	may	be	useful).	

Answer:	Yes.	This	is	because	the	loss	penalizes	even	examples	that	are	well	
classified,	but	the	penalty	decreases	as	you	go	away	from	the	decision	boundary.	



	

Question	I.2	(4	points)	Derive	the	stochastic	gradient	descent	update	Dw	for	L(z):	

Answer:	For	a	learning	rate	h>0,	and	for	z	=	y	f(x)	=	y	Si=1:d	wi	xi	

Dwi		 =	-	h	∂L/∂wi		

=	-	h	∂L/∂z	∂z/∂wi			
=	h	e-z	y	xi	

Dw	 =	h	e-z	y	x	

Question	I.3	(3	point)	We	call	Remp(w)	=	Sk=1:N	L(zk),	where	zk	=	yk	f(xk),	the	

“empirical	risk”.	Derive	the	batch	gradient	update	Dw	for	the	empirical	risk:	

Answer:	Dw	=	h Sk=1:N	exp(-zk)	yk	xk	

Question	I.4	(3	point)	Suppose	you	also	want	to	include	a	penalty	term	l	ǁwǁ2	to	
the	risk	functional	that	you	wish	to	minimize.	Derive	the	batch	gradient	update	
for	the	regularized	risk	Rreg(w)	=	Remp(w)	+	l	ǁwǁ2:	

Answer:	Dw	=	h Sk=1:N		exp(-zk)	yk	xk	–	2	h l w	

or	w	¬	(1	–	2	h l w)	+	h Sk=1:N		exp(-zk)	yk	xk		
	
	
	



Question	I.5	(2	point)	How	do	you	estimate	l	(answer	in	at	most	3	words)?	

Answer:	By	cross-validation.	

	

Problem	II.	Classification	concept	review	(15	points).	

Question	II.1.	Centroid	method.	Now	consider	a	2-class	classification	problem	in	a	2-
dimensional	feature	space	x=[x1,	x2]	with	target	variable	y=±1.	The	training	data	comprises	7	
samples	as	shown	in	Figure	1	(4	black	diamonds	for	the	positive	class	and	3	white	diamonds	for	
the	negative	class).	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	1:	Data	for	Problem	II.	Centroid	method	question.	

Question	II.1.A	(2	points):	Draw	on	Figure	1	the	centroids	of	the	two	classes	(mark	them	with	a	
circles	(+)	for	the	positive	class	and	a	circled	(-)	for	the	negative	class).	Join	the	centroids	with	a	
thick	dashed	line.	Draw	the	decision	boundary	of	the	centroid	method	with	a	thick	solid	line.	
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Question	II.1.B	(1	point)	What	is	the	training	error	rate?	1/7	

Question	II.1.C	(2	points)	Is	there	any	sample	such	that	upon	its	removal,	the	decision	boundary	
changes	in	a	manner	that	the	removed	sample	goes	to	the	other	side	(Answer	“yes”	or	“no”)?		
NO	

Question	II.1.D	(2	point)	What	is	the	leave-one-out	error	rate?	1/7	

	

	Question	II.	2:	Support	Vector	Machine	(SVM).	Consider	again	the	same	training	data	as	in	
Question	II.1,	replicated	in	Figure	2,	for	your	convenience.	The	“maximum	margin	classifier”	
(also	called	linear	“hard	margin”	SVM)	is	a	classifier	that	leaves	the	largest	possible	margin	on	
either	side	of	the	decision	boundary.	The	samples	lying	on	the	margin	are	called	support	
vectors.	

		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	1:	Data	for	Problem	II.	SVM	method	question.	
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Question	II.2.A	(2	points):	Draw	on	Figure	2	the	decision	boundary	obtained	by	the	linear	hard	
margin	SVM	method	with	a	thick	solid	line.	Draw	the	margins	on	either	side	with	thinner	
dashed	lines.	Circle	the	support	vectors.	

Question	II.2.B	(1	points)	What	is	the	training	error	rate?	Zero.	

Question	II.2.C	(1	point)	The	removal	of	which	sample	will	change	the	decision	boundary?		
Number	5.	

Question	II.2.D	(2	points)	What	is	the	leave-one-out	error	rate?	1/7	

Question	II.2.E	(1	point)	A	method	is	more	robust	if	the	difference	between	training	error	and	
leave-one-out	error	is	smaller.	Which	method	(centroid	or	SVM)	is	more	robust?	The	centroid	
method.	

Question	II.2.F	(1	point)	A	method	has	a	better	fit	is	it	has	fewer	training	error.	Which	method	
has	the	best	fit?	The	SVM	method.	

	

	

	

Problem	III.	Newton-Raphson	for	least-square	regression	(10	points)	

In	this	problem,	we	will	derive	an	optimization	algorithm	which	we	did	not	study	
in	class,	called	the	Newton-Raphson	algorithm.	The	algorithm	makes	updates	in	a	
manner	that	often	allows	reaching	the	solution	faster	than	regular	gradient	
descent.	

Suppose	we	start	with	an	initial	value	of	a	(1,	d)	vector		w;	lets	call	this	initial	value	
as	w(0).	We	know	that	the	first	order	Taylor	approximation	of	∇wR(w(1)),	at	the	
point	w(0)	is:		

∇wR(w(1))	=	∇wR(w(0))	+	(w(1)	-	w(0))	∇w
2R(w(0))	

Question	III.1	(3	points).	We	want	to	minimize	R(w(1))	using	this	approximation	of	
∇wR(w(1)).	Find	the	update	equation	for	the	value	of	w(1).	This	is	called	the	
Newton-Raphson	update.	Notes:	This	is	not	a	trick	question,	you	just	have	to	

	



solve	for	w(1)	after	equaling	∇wR(w(1))	to	0.	You	can	assume	that	the	(d,	d)	Hessian	
matrix	∇w

2R(w(0))	is	invertible.		

Answer:	Let	us	call	H	=	∇w
2R(w(0))	the	Hessian	matrix.	

∇wR(w(1))	=	0	Û	∇wR(w(0))	+	(w(1)	-	w(0))	H	=	0	
Û	(w(1)	-	w(0))	H	=	-	∇wR(w(0))		
Û	w(1)	=		w(0)	-	∇wR(w(0))	H-1		 	 (if	H	is	invertible)	
	

Question	III.2	(4	points).	Consider	now	the	linear	regression	problem:	We	are	
given	a	training	data	matrix	X	of	dim	(N,	d)	and	a	target	vector	y	of	dim(N,	1)	and	
want	to	find	a	weight	vector	w	of	dim	(1,	d)	such	that	f(x)	=	x	wT	approximates	y	
best,	in	the	least	square	sense.	The	risk	functional	is:	R(w)	=	(XwT	-	y)T	(XwT-	y).	We	
will	assume	that	we	are	in	the	“regression	case”	N>d	and	that	the	Hessian	is	
invertible.	Find	the	Newton-Raphson	update	for	w(1).	

Answer:		 ∇wR	=	2	(wXTX	–	yTX)	
∇w

2R	=	H	=	2	XTX	
w(1)		 =		w(0)	-	∇wR(w(0))	H-1	

=	w(0)	–	(w(0)XTX	–	yTX)	(XTX)-1	
=	–	yTX(XTX)-1	

	

Question	III.3	(3	points).	Recall	the	solution	to	the	problem	we	found	in	class	
using	the	normal	equations	or	the	solution	found	by	solving	for	∇wR(w)		=	0	
directly.	Compare	with	the	solution	obtained	in	question	(2).	How	many	iterations	
of	the	Newton-Raphson	update	do	we	need	to	perform	for	linear	regression?	

Answer:		 One	iteration.		

∇wR	=	2	(wXTX	–	yTX)	=	0	Û	wXTX	=	yTX	Û	w	=	yTX(XTX)-1	,	if	H	=	XTX	is	invertible.	

Newton-Raphson	update:	w(1)	=	–	yTX(XTX)-1	identical.	


