Physics 137A, Spring 2004 , Section 1 (Hardtke), Midterm II Solutions

Problem 1 Part A Let,

$$
U=\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)
$$

The Hermitian conjugate is:

$$
U^{\dagger}=\left(\begin{array}{cc}
U_{11}^{*} & U_{21}^{*} \\
U_{12}^{*} & U_{22}^{*}
\end{array}\right)
$$

The unitarity condition, $U^{\dagger} U=1$, gives:

$$
\left(\begin{array}{cc}
U_{11}^{*} & U_{21}^{*} \\
U_{12}^{*} & U_{22}^{*}
\end{array}\right)\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)
$$

These yield four equations that are conditions on the matrix elements:

$$
\begin{aligned}
& U_{11}^{*} U_{11}+U_{21}^{*} U_{21}=1 \\
& U_{11}^{*} U_{12}+U_{21}^{*} U_{22}=0 \\
& U_{12}^{*} U_{11}+U_{22}^{*} U_{21}=0 \\
& U_{12}^{*} U_{12}+U_{22}^{*} U_{22}=1
\end{aligned}
$$

Part B The equation $U_{11}^{*} U_{11}+U_{21}^{*} U_{21}=1$ is equivalent to $R+T=1$ for scattering from the left, and the equation $U_{12}^{*} U_{12}+U_{22}^{*} U_{22}=1$ is equivalent to $R+T=1$ for scattering from the right.

Problem 2 We are given $\hat{A}|\phi\rangle=a|\phi\rangle$ and

$$
[\hat{A}, \hat{B}]=\hat{B}+2 \hat{B} \hat{A}^{2}
$$

We can apply the commutation relation to the state $|\phi\rangle$:

$$
[\hat{A}, \hat{B}]|\phi\rangle=\left(\hat{B}+2 \hat{B} \hat{A}^{2}\right)|\phi\rangle
$$

Expanding the commutator, we have:

$$
(\hat{A} \hat{B}-\hat{B} \hat{A})|\phi\rangle=\left(\hat{B}+2 \hat{B} \hat{A}^{2}\right)|\phi\rangle
$$

We can move one term to the right side:

$$
\hat{A} \hat{B}|\phi\rangle=\left(\hat{B}+2 \hat{B} \hat{A}^{2}+\hat{B} \hat{A}\right)|\phi\rangle
$$

Using $\hat{A}|\phi\rangle=a|\phi\rangle$, we have,

$$
\hat{A}(\hat{B}|\phi\rangle)=\left(1+2 a^{2}+a\right)(\hat{B}|\phi\rangle)
$$

Thus $\hat{B}|\phi\rangle$ is and eigenvector of \hat{A} with eigenvalue $\left(1+2 a^{2}+a\right)$.

Problem 3

$$
\begin{aligned}
\frac{d\langle\hat{A}\rangle}{d t} & =\frac{d}{d t}\langle\Psi \mid \hat{A} \Psi\rangle \\
& =\left\langle\left.\frac{\partial \Psi}{\partial t} \right\rvert\, \hat{A} \Psi\right\rangle+\left\langle\Psi \left\lvert\, \frac{\partial \hat{A}}{\partial t} \Psi\right.\right\rangle+\left\langle\Psi \left\lvert\, \hat{A} \frac{\partial \Psi}{\partial t}\right.\right\rangle \\
& =\left\langle\left.\frac{\partial \Psi}{\partial t} \right\rvert\, \hat{A} \Psi\right\rangle+\left\langle\Psi \left\lvert\, \hat{A} \frac{\partial \Psi}{\partial t}\right.\right\rangle+\left\langle\frac{\partial \hat{A}}{\partial t}\right\rangle
\end{aligned}
$$

Now we can use the Schrdinger equation,

$$
\imath \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

and its complex conjugate (noting that \hat{H} is a Hermitian operator),

$$
-\imath \hbar \frac{\partial \Psi^{*}}{\partial t}=\hat{H} \Psi^{*}
$$

Thus,

$$
\frac{\partial \Psi}{\partial t}=\frac{1}{\imath \hbar} \hat{H} \Psi
$$

We now have,

$$
\begin{aligned}
\frac{d\langle\hat{A}\rangle}{d t} & =\frac{-1}{\imath \hbar}\langle\hat{H} \Psi \mid \hat{A} \Psi\rangle+\frac{1}{\imath \hbar}\langle\Psi \mid \hat{A} \hat{H} \Psi\rangle+\left\langle\frac{\partial \hat{A}}{\partial t}\right\rangle \\
& =\frac{-1}{\imath \hbar}\langle\Psi \mid \hat{H} \hat{A} \Psi\rangle+\frac{1}{\imath \hbar}\langle\Psi \mid \hat{A} \hat{H} \Psi\rangle+\left\langle\frac{\partial \hat{A}}{\partial t}\right\rangle \\
& =\frac{1}{\imath \hbar}\langle\Psi \mid(\hat{A} \hat{H}-\hat{H} \hat{A}) \Psi\rangle+\left\langle\frac{\partial \hat{A}}{\partial t}\right\rangle \\
& =\frac{1}{\imath \hbar}\langle[\hat{A}, \hat{H}]\rangle+\left\langle\frac{\partial \hat{A}}{\partial t}\right\rangle
\end{aligned}
$$

In the second step, we have used the fact that \hat{H} is Hermitian and can be moved to the second vector in the inner product. Multiplying by $\imath \hbar$ yields,

$$
\imath \hbar \frac{d\langle\hat{A}\rangle}{d t}=\langle[\hat{A}, \hat{H}]\rangle+\imath \hbar\left\langle\frac{\partial \hat{A}}{\partial t}\right\rangle
$$

Problem 4 Part A The stationary states $\left|\psi_{n}\right\rangle$ are solutions to the Schrödinger equation,

$$
\hat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle
$$

with $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$. The probability of measuring a given eigenvalue E_{n} is,

$$
\left|c_{n}\right|^{2}=\left|\left\langle\psi_{n} \mid \Psi\right\rangle\right|^{2}
$$

For,

$$
|\Psi(x)\rangle=\frac{1}{\sqrt{5}}\left[2\left|\psi_{2}(x)\right\rangle+\left|\psi_{3}(x)\right\rangle\right]
$$

we have $c_{2}=2 / \sqrt{5}$ and $c_{3}=1 / \sqrt{5}$ and all other c_{n} equal to zero. Thus we measure energy $E_{2}=\left(2+\frac{1}{2}\right) \hbar \omega$ with probability $\left|c_{2}\right|^{2}=\frac{4}{5}$, and energy $E_{3}=\left(3+\frac{1}{2}\right) \hbar \omega$ with probability $\left|c_{3}\right|^{2}=\frac{1}{5}$

Part B We know that,

$$
\hat{a}_{+}\left|\psi_{n}\right\rangle=c_{n}\left|\psi_{n+1}\right\rangle .
$$

We thus have,

$$
\begin{aligned}
\left\langle\hat{a}_{+} \psi_{n} \mid \hat{a}_{+} \psi_{n}\right\rangle & =\left|c_{n}\right|^{2}\left\langle\psi_{n+1} \mid \psi_{n+1}\right\rangle \\
& =\left|c_{n}\right|^{2}
\end{aligned}
$$

In the last step, we use the fact that the $\left|\psi_{n}\right\rangle$ are orthonormal. We can also write the inner product as [using the relation $\left(\hat{a}_{-}\right)^{\dagger}=\hat{a}_{+}$],

$$
\left\langle\hat{a}_{+} \psi_{n} \mid \hat{a}_{+} \psi_{n}\right\rangle=\left\langle\psi_{n} \mid \hat{a}_{-} \hat{a}_{+} \psi_{n}\right\rangle
$$

We now note that the Hamiltonian can be written as,

$$
\hat{H}=\hat{a}_{-} \hat{a}_{+}-\frac{1}{2} \hbar \omega,
$$

and thus,

$$
\hat{a}_{-} \hat{a}_{+}=\hat{H}+\frac{1}{2} \hbar \omega .
$$

Making this substitution, we have:

$$
\begin{aligned}
\left\langle\hat{a}_{+} \psi_{n} \mid \hat{a}_{+} \psi_{n}\right\rangle & =\left\langle\psi_{n} \left\lvert\,\left(\hat{H}+\frac{1}{2} \hbar \omega\right) \psi_{n}\right.\right\rangle \\
& =\left\langle\psi_{n} \left\lvert\,\left(\left(n+\frac{1}{2}\right) \hbar \omega+\frac{1}{2} \hbar \omega\right) \psi_{n}\right.\right\rangle \\
& =(n+1) \hbar \omega\left\langle\psi_{n} \mid \psi_{n}\right\rangle .
\end{aligned}
$$

We now have $\left|c_{n}\right|^{2}=(n+1) \hbar \omega$, or $c_{n}=\sqrt{(n+1) \hbar \omega}$.
Part C Using the result from Part B, we have,

$$
\begin{aligned}
|\Phi\rangle & =\hat{a}_{+}|\Psi(x)\rangle \\
& =\hat{a}_{+}\left(\frac{1}{\sqrt{5}}\left[2\left|\psi_{2}(x)\right\rangle+\left|\psi_{3}(x)\right\rangle\right]\right) \\
& =A\left(\frac{2}{\sqrt{5}}(\sqrt{3 \hbar \omega})\left|\psi_{3}(x)\right\rangle+\frac{1}{\sqrt{5}}(\sqrt{4 \hbar \omega})\left|\psi_{4}(x)\right\rangle\right)
\end{aligned}
$$

We introduce the complex number A in the last step since the vector is no longer normalized and we need to determine A. We get A from,

$$
\begin{aligned}
1 & =\langle\Phi(x) \mid \Phi(x)\rangle \\
& =|A|^{2}\left(\frac{2}{\sqrt{5}}(\sqrt{3 \hbar \omega})\left\langle\psi_{3}(x)\right|+\frac{1}{\sqrt{5}}(\sqrt{4 \hbar \omega})\left\langle\psi_{4}(x)\right|\right)\left(\frac{2}{\sqrt{5}}(\sqrt{3 \hbar \omega})\left|\psi_{3}(x)\right\rangle+\frac{1}{\sqrt{5}}(\sqrt{4 \hbar \omega})\left|\psi_{4}(x)\right\rangle\right) \\
& =|A|^{2}\left(\frac{4}{5}(3 \hbar \omega)+\frac{1}{5}(4 \hbar \omega)\right) \\
& =|A|^{2} \frac{16 \hbar \omega}{5}
\end{aligned}
$$

This gives $A=\frac{\sqrt{5}}{4 \sqrt{\hbar \omega}}$. Substituting into the equation for $|\Phi\rangle$ we get,

$$
|\Phi\rangle=\frac{\sqrt{3}}{2}\left|\psi_{3}(x)\right\rangle+\frac{1}{2}\left|\psi_{4}(x)\right\rangle
$$

Using the procedure from Part A, we measure energy $E=\left(3+\frac{1}{2}\right) \hbar \omega$ with probability $\left|c_{3}\right|^{2}=3 / 4$ and measure energy $E=\left(4+\frac{1}{2}\right) \hbar \omega$ with probability $\left|c_{4}\right|^{2}=1 / 4$.

