University of California, Berkeley
 Department of Mechanical Engineering
 ME 104, Fall 2016

Midterm Exam 2 (9 November 2016)

1. Let \mathbf{F} be the resultant force acting on a particle B of mass m and let \mathbf{G} be the linear momentum of B. Denote the linear impulse of \mathbf{F} over a time interval $t_{1} \leq t \leq t_{2}$ by

$$
\begin{equation*}
\boldsymbol{I}=\int_{t_{1}}^{t_{2}} \mathbf{F} d t \tag{1}
\end{equation*}
$$

(a) Prove that

$$
\begin{equation*}
\mathbf{G}\left(t_{2}\right)=\mathbf{G}\left(t_{1}\right)+\boldsymbol{I} . \tag{2}
\end{equation*}
$$

(b) A particle of mass $m=0.2 \mathrm{~kg}$ is traveling on a frictionless horizontal surface with a constant velocity

$$
\begin{equation*}
\mathbf{v}_{0}=1.25 \mathrm{i} \mathrm{~m} / \mathrm{s} \tag{3}
\end{equation*}
$$

It is desired to change its velocity to $3.75 \mathrm{~m} / \mathrm{s}$ in a direction that makes an angle of 60° counterclockwise with the unit vector i. Suppose that we are required to achieve this by applying a force of constant magnitude F in an unspecified direction

$$
\begin{equation*}
\mathbf{e}=\cos \phi \mathbf{i}+\sin \phi \mathbf{j}, \quad \phi=\text { const. } \tag{4}
\end{equation*}
$$

for $\Delta t=0.4 \mathrm{~s}$. Solve for F, \mathbf{e}, and ϕ.
(c) Indicate your results on a vector diagram.
2. A collar C weighing 9 lbf can slide along a circular rigid $\operatorname{rod} A B D$ in a vertical plane with no friction (See Fig.1). The rod is a distance $r=6$ in from O. The tangents to the rod at A and D intersect at a point E. A linearly elastic spring is anchored at E and is also attached to the collar. The unstretched length of the spring is $l=6$ in and the spring constant is $k=24 \mathrm{lbf} / \mathrm{ft}$. At time $t=0$, the collar is released from rest at D, where $O D$ makes an angle of 60° with $O B$.
(a) Draw free-body diagrams of the collar for the positions D and B, indicating the directions of the unit tangent and unit normal vectors \mathbf{e}_{t} and \mathbf{e}_{n} at these points.
(b) Argue that the total mechanical energy of the collar is conserved, i.e.,

$$
\begin{equation*}
E=T+V_{g}+V_{e}=\text { const. } \tag{5}
\end{equation*}
$$

(c) Solve for the speed of the collar at B.
(d) Solve for the tangential acceleration and the force N exerted on the collar by the rod at B.
(e) Describe in your own words the motion that takes place for $t \geq 0$.

Figure 1
3. The Mars Express satellite has an elliptical orbit about Mars. The minimum and maximum altitudes are 298 km and 10107 km . The mean radius of Mars is $R=3396 \mathrm{~km}$. Also, $G=6.673 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} \cdot \mathrm{s}^{2}\right)$ and the mass of Mars is $M=0.642 \times 10^{24} \mathrm{~kg}$. Let r_{p} and r_{a} be the distances from the center of Mars to the lowest and highest points of the orbit, respectively, and let v_{p} and v_{a} be the corresponding velocities of the satellite. Recall that the potential energy of the satellite per unit mass is

$$
\begin{equation*}
\frac{V}{m}=-\frac{G M}{r} . \tag{6}
\end{equation*}
$$

(a) Prove that

$$
\begin{equation*}
v_{p}^{2}=v_{a}^{2}+2 G M\left(\frac{1}{r_{p}}-\frac{1}{r_{a}}\right) \tag{7}
\end{equation*}
$$

(b) Argue that

$$
\begin{equation*}
r_{p} v_{p}=r_{a} v_{a} \tag{8}
\end{equation*}
$$

(c) Calculate v_{a} and v_{p}.

