UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,

CE W30 / ME W85
 Midterm Exam 2
 Solutions

1. There are two ways to solve this problem. One is to make section cuts as indicated and determine the needed expressions for $V(x)$ and $M(x)$ in various sections of the beam using force and moment equilibrium.

The other way to do this is to note that the distributed load

$$
\begin{equation*}
q(x)=50 \delta(x-10)-10 H(x-15) \tag{1}
\end{equation*}
$$

and that

$$
\begin{align*}
& V(x)=V(0)-\int_{0}^{x} q(x) d x=0-50 H(x-10)+10\langle x-15\rangle \tag{2}\\
& M(x)=M(0)-\int V(x) d x=-375+50\langle x-10\rangle-5\langle x-15\rangle^{2} \tag{3}
\end{align*}
$$

The end result, either way is:

Grading Rubric: Method 1: Free body diagrams 20pts; Vertical Equilibrium 10pts; Moment Equilibrium 10pts; Graph of V(x) 5pts; Graph of $M(x)$ 5pts. Method 2: Distributed load expression 20pts; Integration with BCs to get $V(x)$ 10pts; Integration with BCs to get $M(x)$ 10pts; Graph of $V(x)$ 5pts; Graph of $M(x) 5 p t s$.
2. Find the rotation field:

$$
\begin{align*}
G J \phi^{\prime \prime} & =-t_{o}\left(1+z^{2} / L^{2}\right) \tag{4}\\
G J \phi^{\prime} & =-t_{o}\left(z+z^{3} / 3 L^{2}\right)+C \tag{5}\\
G J \phi & =-t_{o}\left(z^{2} / 2+z^{4} / 12 L^{2}\right)+C z+D \tag{6}
\end{align*}
$$

Apply the boundary condtions:

$$
\begin{array}{ll}
\phi(0)=0 \Rightarrow & D=0 \\
\phi(L)=0 \Rightarrow & C=t_{o}\left(L^{2} / 2 L+L^{4} / 12 L^{2} L\right)=7 t_{o} L / 12 \tag{8}
\end{array}
$$

Apply the given condition and solve for t_{o} :

$$
\begin{align*}
\delta R / L & =\frac{t_{o}}{G J}\left[-\left(\frac{3^{2} L^{2}}{4^{2} \cdot 2}+\frac{3^{4} L^{4}}{4^{4} \cdot 12 L^{2}}\right)+\frac{7 L \cdot 3 L}{12 \cdot 4}\right] \tag{9}\\
t_{o} & =\frac{\delta R G J}{L^{3}} \frac{1}{\frac{21}{48}-\frac{9}{32}-\frac{81}{12 \cdot 256}} \tag{10}\\
& =7.70 \frac{\delta R G J}{L^{3}}=3.85 \frac{\delta \pi R^{5} G}{L^{3}} \tag{11}
\end{align*}
$$

Grading Rubric: Starting ODE and its integration 15pts; Boundary conditions and constants of integration 9pts; Derivation and value of t_{o} 6pts.
3. The state of stress in the bar is

$$
\boldsymbol{\sigma}=\left[\begin{array}{cc}
\frac{P}{A} & 0 \tag{12}\\
0 & 0
\end{array}\right]
$$

The traction on the Aluminum-Epoxy interface is

$$
\boldsymbol{t}=\boldsymbol{\sigma}^{T} \boldsymbol{n}=\left[\begin{array}{cc}
\frac{P}{A} & 0 \tag{13}\\
0 & 0
\end{array}\right]\binom{\cos \theta}{\sin \theta}=\binom{\frac{P}{A} \cos \theta}{0}
$$

The normal stress on the interface is $\sigma=\boldsymbol{t} \cdot \boldsymbol{n}$ and the shear stress on the interface is $\tau=\boldsymbol{t} \cdot \boldsymbol{s}$:

$$
\begin{align*}
\sigma & =\binom{\frac{P}{A} \cos \theta}{0} \cdot\binom{\cos \theta}{\sin \theta}=\frac{P}{A} \cos ^{2} \theta=\frac{P}{2 A}(1+\cos 2 \theta) \tag{14}\\
\tau & =\binom{\frac{P}{A} \cos \theta}{0} \cdot\binom{\sin \theta}{-\cos \theta}=\frac{P}{A} \cos \theta \sin \theta=\frac{P}{2 A}(\sin 2 \theta) \tag{15}
\end{align*}
$$

The largest normal stress happens at $\theta=0$; the largest shear stress happens at $\theta=\pi / 4$. Thus $P / A \leq \sigma_{\max }$ and $P / 2 A \leq \tau_{\max }$, which implies

$$
\begin{align*}
& P \leq 20 \cdot 10=200 \mathrm{~N} \tag{16}\\
& P \leq 40 \cdot 4=160 \mathrm{~N} \tag{17}
\end{align*}
$$

Taking the more restrictive of the two conditions indicates that $P \leq$ 160 N.

Grading Rubric: Overall state of stress 5pts; Determination of interface traction 5pts; Decomposition into normal and shear components 5pts; Application of conditions 5pts.

