UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering, Department of Civil Engineering Mechanics and Materials
Summer 2016 Professor: S. Govindjee

CE W30 / ME W85
 Midterm Exam 1

Solutions

1. (a) Draw a free-body diagram for each rigid body:

Note that $\boldsymbol{e}_{A}=-\frac{1}{2} \boldsymbol{e}_{x}-\frac{\sqrt{3}}{2} \boldsymbol{e}_{y}$ and $\boldsymbol{e}_{B}=\frac{1}{\sqrt{5}} \boldsymbol{e}_{x}+\frac{2}{\sqrt{5}} \boldsymbol{e}_{y}$.

Start with moment equilibrium for the lever-arm about C, which gives

$$
\begin{align*}
0 & =\boldsymbol{r}_{C A} \times 1000 \boldsymbol{e}_{A}+\boldsymbol{r}_{C B} \times F_{B} \boldsymbol{e}_{B} \tag{1}\\
0 & =\left[-\left(25+300 \frac{\sqrt{3}}{2}\right) \boldsymbol{e}_{x}+200 \boldsymbol{e}_{y}\right] \times 1000\left[-\frac{1}{2} \boldsymbol{e}_{x}-\frac{\sqrt{3}}{2} \boldsymbol{e}_{y}\right] \\
& +\left[-25 \boldsymbol{e}_{x}+50 \boldsymbol{e}_{y}\right] \times F_{B}\left[\frac{1}{\sqrt{5}} \boldsymbol{e}_{x}+\frac{2}{\sqrt{5}} \boldsymbol{e}_{y}\right] \tag{2}\\
0 & =1000\left(\left(25+300 \frac{\sqrt{3}}{2}\right) \frac{\sqrt{3}}{2}+200 \frac{1}{2}\right)-F_{B}\left(25 \frac{2}{\sqrt{5}}+50 \frac{1}{\sqrt{5}}\right) \tag{3}
\end{align*}
$$

Solve this for F_{B}

$$
\begin{equation*}
F_{B}=7.75 \mathrm{kN} \tag{4}
\end{equation*}
$$

and note that the linkage is a two force member. Now, apply force equilibrium to the cutter:

$$
\begin{equation*}
F_{E} \boldsymbol{e}_{y}-F_{B} \boldsymbol{e}_{B}=\mathbf{0} \tag{5}
\end{equation*}
$$

Take the y-component of the force equilibrium to find:

$$
\begin{align*}
F_{E}-F_{B} \boldsymbol{e}_{y} \cdot \boldsymbol{e}_{B} & =0 \tag{6}\\
F_{E}=F_{B} e_{B y} & =7.75 \frac{2}{\sqrt{5}}=\underline{\underline{6.93 \mathrm{kN}}} \tag{7}
\end{align*}
$$

(b) Impose equilibrium on the cutter

$$
\begin{align*}
& \{\mathbf{0}, \mathbf{0}\}=\left\{\boldsymbol{R}, \boldsymbol{M}_{R}^{(D)}\right\}_{\text {guides }}+\left\{F_{E} \boldsymbol{e}_{y},-F_{E} \cdot 20 \boldsymbol{e}_{z}\right\}+\left\{-F_{B} \boldsymbol{e}_{B}, \mathbf{0}\right\} \tag{8}\\
& \left\{\boldsymbol{R}, \boldsymbol{M}_{R}^{(D)}\right\}_{\text {guides }}=-\left\{F_{E} \boldsymbol{e}_{y},-F_{E} \cdot 20 \boldsymbol{e}_{z}\right\}-\left\{-F_{B} \boldsymbol{e}_{B}, \mathbf{0}\right\} \tag{9}\\
& \left\{\boldsymbol{R}, \boldsymbol{M}_{R}^{(D)}\right\}_{\text {guides }}=\underline{\underline{\left\{3.47 \boldsymbol{e}_{x} \mathrm{kN}, 133 \boldsymbol{e}_{z} \mathrm{kN} \cdot \mathrm{~mm}\right\}}} \tag{10}
\end{align*}
$$

Grading Rubric: Free body diagrams (FBDs) 20pts. Determination of the internal force in the two-force linkage 10pts. Determination of the cutting force 10pts. Determination of the necessary net force and moment from the guides 10pts.
2. Net force

$$
\begin{align*}
R & =\int_{0}^{L} q_{o}+q_{1} \frac{x}{L}+q_{2}\left(\frac{x}{L}\right)^{2} d x \tag{11}\\
\boldsymbol{R} & =\underline{\left.\underline{\left[q_{o} L+q_{1}\right.} \frac{L}{2}+q_{2} \frac{L}{3}\right] \boldsymbol{e}_{y}} \tag{12}
\end{align*}
$$

acting at x_{c} where

$$
\begin{align*}
0 & =\int_{0}^{L}\left(x-x_{c}\right) \cdot\left(q_{o}+q_{1} \frac{x}{L}+q_{2}\left(\frac{x}{L}\right)^{2}\right) d x \tag{13}\\
x_{c} & =\frac{\int_{0}^{L} x \cdot\left(q_{o}+q_{1} \frac{x}{L}+q_{2}\left(\frac{x}{L}\right)^{2}\right) d x}{\int_{0}^{L} q_{o}+q_{1} \frac{x}{L}+q_{2}\left(\frac{x}{L}\right)^{2} d x} \tag{14}\\
x_{c} & =\frac{q_{o} L / 2+q_{1} L / 3+q_{2} L / 4}{q_{o}+q_{1} / 2+q_{2} / 3} \tag{15}
\end{align*}
$$

Note x_{c} is chosen at the point where the resultant moment is zero.
Grading Rubric: Determination of total force 20pts. Determination of necessary point of application for equivalency.
3. (a) Make a section cut at any location and look at the left piece.

This shows that:

$$
\begin{align*}
& R(x)=\underline{\underline{-P}} \tag{16}\\
& \sigma(x)=\underline{\underline{-P} / A} \tag{17}\\
& \varepsilon(x)=\frac{\overline{-P / E A+\left(\alpha_{o}+\alpha_{1} \frac{x}{L}\right) \Delta T}}{} \tag{18}\\
& u(x)==-P x / E A+\left(\alpha_{o} x+\alpha_{1} \frac{x^{2}}{2 L}\right) \tag{19}\\
& \hline-C
\end{align*}
$$

Use the boundary condition $u(L)=0$ to find C :

$$
\begin{gather*}
C=P L / A E-\left(\alpha_{o} L+\alpha_{1} \frac{L}{2}\right) \Delta T \tag{20}\\
u(x)=P(L-x) / E A+\left(\alpha_{o}(x-L)+\alpha_{1} \frac{L}{2}\left(\frac{x^{2}}{L^{2}}-1\right)\right) \Delta T \tag{21}\\
\hline \hline
\end{gather*}
$$

Alternately, one could have used a differential equation method using the thermal form of the second-order governing ODE:

$$
\begin{equation*}
\left(A E u^{\prime}(x)-A E \Delta T \alpha(x)\right)^{\prime}+b(x)=0 \tag{22}
\end{equation*}
$$

where $b(x)=0$ and the boundary conditions are $u(L)=0$ and $R(0)=$ $A E u^{\prime}(0)-A E \Delta T \alpha(0)=-P$. Double integration and application of the boundary conditions results in the same expression for $u(x)$. One then find $\varepsilon(x)$ as the first derivative of $u(x), \sigma(x)$ is found from $\varepsilon(x)=\sigma(x) / E+\alpha(x) \Delta T$, and $R(x)$ is found from $A \sigma(x)$.

Part (b)

Dashed curves show alternate acceptable answers (among various options depending on the sign and magnitude of the given constants).
Grading Rubric: Determination of internal force field 4 pts. Determination of stress field 3pts. Determination of strain field 5pts. Determination of displacement field 3pts. Sketches 5pts.

