S. Govindjee

UNIVERSITY OF CALIFORNIA BERKELEYStructural Engineering,Department of Civil EngineeringMechanics and MaterialsSummer 2016Professor: S. Govindjee

CE W30 / ME W85 Midterm Exam 1 July 14, 2016 1.5 hours (download to upload) No late exams will be accepted

Open Resource Exam

No Collaboration Permitted

Problem	Score
#1	/50
#2	/30
#3	/20
Total	/100

Name

 SID

Attach this cover-page to your upload

- 1. Consider the sheet-metal shear shown, where each individual part can be considered to be a rigid-body. Assuming zero friction everywhere:
 - (a) What is the cutting force at E?
 - (b) What net force and moment do the cutter's vertical guides have to provide? State your answer with respect to D (i.e. use D as your reference point).

S. Govindjee

2. A rigid rod of length L is subjected to a vertical distributed load

$$q(x) = \left[q_o + q_1 \frac{x}{L} + q_2 \left(\frac{x}{L}\right)^2\right] \,.$$

Find a point force system that is equivalent to the given distributed load.

- 3. The linear elastic bar shown has an inhomogeneous coefficient of thermal expansion $\alpha(x) = \alpha_o + \alpha_1 \frac{x}{L}$, where α_o and α_1 are given constants.
 - (a) For the mechanical load shown and an assumed change of temperature ΔT , find R(x), $\sigma(x)$, $\varepsilon(x)$, and u(x).
 - (b) Neatly sketch each field and label all critical points, slopes, and intersections.

Assume the cross-sectional area and Young's modulus are constants.

