Write your name here:
Instructions:

- Answer all questions to the best of your abilities. Be sure to write legibly and state your answers clearly.
- The point values for each question are indicated.
- You are not allowed to use notes, friends, phones, etc.
- You can use calculators.
- There are a total of 100 points.
- Feel free to ask questions, but only for clarification purposes.
(1a) [10 POINTS] Suppose that the interaction between two atoms is given by the Lennard-Jones potential:

$$
V(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] .
$$

Consider a 2D crystal composed of these atoms with one atom per unit cell and primitive lattice vectors:

$$
\begin{aligned}
& \mathbf{a}=\frac{\eta}{2} \mathbf{e}_{1}+\frac{\eta}{4} \mathbf{e}_{2} \\
& \mathbf{b}=\frac{\eta}{4} \mathbf{e}_{1}-\frac{\eta}{2} \mathbf{e}_{2}
\end{aligned}
$$

Define the energy per atom of this crystal to be:

$$
\frac{E}{\text { atom }}=2 \varepsilon\left[A_{12}\left(\frac{\sigma}{\eta}\right)^{12}-A_{6}\left(\frac{\sigma}{\eta}\right)^{6}\right] .
$$

Derive algebraic expressions for the constants A_{12} and A_{6}.
(1b) [10 POINTS] Derive an expression for the value of η that minimizes the energy per atom of this 2D crystal in terms of the known quantities $\sigma, \varepsilon, A_{12}$ and A_{6}. Evaluate the total energy per unit area of the crystal at the equilibrium lattice parameter you calculated.
(2) [10 POINTS] Prove that if a $2^{\text {nd }}$ rank tensor is symmetric in the unprimed frame, that it will be symmetric in the primed frame. Be certain to give a very clear explanation of the logic underlying your proof.
(3) A crystal has the point symmetry shown in the stereogram:

Use this symmetry to complete the rest of problem 3.
(3a) [10 POINTS] Consider two reference frames related by the symmetry operation 3 . Assume that the axis of rotation coincides with \mathbf{e}_{3}. Sketch the axes associated with the original reference frame, and those associated with the primed reference frame, and give the transformation matrix a that transforms a vector from the original frame to the primes frame.
(3b) [10 POINTS] Using the matrix a constructed above, derive expressions for σ_{11}^{\prime} and σ_{12}^{\prime} in terms of σ_{11}, σ_{22}, and σ_{12}, where the $\sigma_{i j}$'s are elements of the symmetric conductivity tensor.
(3c) [5 POINTS] Based on the expressions you derived in part (b), derive constraints on the values of σ_{11}, σ_{22}, and σ_{12} in this material.
(4) [10 POINTS] A cubic material is distorted according to the following distortion tensor:

$$
\mathbf{e}=\left[\begin{array}{lll}
\alpha & \gamma & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Give the associated stress tensor in terms of the parameters α and γ and the elastic constants C_{11}, C_{12} and C_{44}. Recall that the strain tensor is the symmetric part of the distortion tensor. Also, recall that in Voigt notation, the index pairs $i j$ map onto the single indices n according to:

$i j$	11	22	33	23 or 32	13 or 31	12 or 21
n	1	2	3	4	5	6

Finally, recall that the elastic constant matrix for cubic materials is given by:

$$
\mathbf{C}=\left(\begin{array}{cccccc}
C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\
C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & C_{44} & 0 \\
0 & 0 & 0 & 0 & 0 & C_{44}
\end{array}\right) .
$$

(5) An electron bound to a hydrogen atom is described by the wavefunction:

$$
\Psi(\mathbf{r}, t)=\frac{1}{\sqrt{3}} \exp \left(\frac{-i E_{4} t}{\hbar}\right) \psi_{420}(\mathbf{r})-i \sqrt{\frac{2}{3}} \exp \left(\frac{-i E_{2} t}{\hbar}\right) \psi_{21-1}(\mathbf{r}),
$$

with $\psi_{n \prime m}(\mathbf{r})$ an eigenfunction of the Hamiltonian operator of the H atom, \hat{H}, squared angular momentum operator, \hat{L}^{2}, and z-component of the angular momentum operator, \hat{L}_{z}.
(5a) [5 POINTS] Give the expectation value of the total energy.
(5b) [5 POINTS] Give the expectation value of the z-component of the angular momentum, \hat{L}_{z}, for the electron.
(5c) [5 POINTS] Give the expectation value of the angular momentum squared, \hat{L}^{2}.

(6) Suppose that we consider the formation of a bond between a H^{-}and a neutral H atom (so there are three electrons in total - initially one atom has two electrons in its ground state with energy E_{o}, and the other has one electron, initially in the ground state with energy E_{o}). Assume that you write the eigenfunction of the molecule as a linear combination of the ground state eigenfunctions of the bare atoms:

$$
\psi_{m o l}(\mathbf{r})=b_{1} \psi_{1}(\mathbf{r})+b_{2} \psi_{2}(\mathbf{r}),
$$

with $\psi_{1}(\mathbf{r})$ the eigenfunction of the bare H atom on the left, and $\psi_{2}(\mathbf{r})$ the eigenfunction on the right H atom. (Note that the states $\psi_{1}(\mathbf{r})$ and $\psi_{2}(\mathbf{r})$ are real.) Assume further that

$$
\int d \mathbf{r} \psi_{i}(\mathbf{r}) \psi_{j}(\mathbf{r})=\delta_{i j} .
$$

Within this basis, the Hamiltonian matrix, \mathbf{H}, is given by:

$$
\mathbf{H}=\left(\begin{array}{ll}
\int d \mathbf{r} \psi_{1}(\mathbf{r}) \hat{H} \psi_{1}(\mathbf{r}) & \int d \mathbf{r} \psi_{1}(\mathbf{r}) \hat{H} \psi_{2}(\mathbf{r}) \\
\int d \mathbf{r} \psi_{2}(\mathbf{r}) \hat{H} \psi_{1}(\mathbf{r}) & \int d \mathbf{r} \psi_{2}(\mathbf{r}) \hat{H} \psi_{2}(\mathbf{r})
\end{array}\right)=\left(\begin{array}{cc}
E_{o} & -\frac{V_{o}}{d} \\
-\frac{V_{o}}{d} & E_{o}
\end{array}\right),
$$

with V_{o} a positive number, and d the distance between the nuclei.
(a) [5 points] What possible energies might one measure for an electron bound to the dimer with bond length d ?
(b) [5 points] Give the coefficients b_{1} and b_{2} for the antibonding state, and state how these are related to the Hamiltonian matrix, H. Sketch the values of the antibonding state of the molecule along the straight line passing through the nuclei of the atoms.
(c) [5 points] Calculate the change in electronic energy upon forming the dimer with a bond length d.
(d) [5 points] Now suppose that in addition to the change in electronic energy, there is a repulsive energy that depends on the separation of the nuclei according to:

$$
E_{\text {rep }}(d)=\frac{A}{d^{4}}
$$

with A a positive constant. Given this repulsive energy, and the change in electron energy you computed in part (c), give the equilibrium bond length of the H_{2}^{-}molecule in terms of A and V_{o}.

