CHEM 120A Midterm 1 Solutions

Qinghui Ge

9/19/2015

1. (a) An operator \hat{O} is said to be linear if for any pair of function f and g and scalar c_{1} and c_{2}, it satisfies

$$
\hat{O}\left(c_{1} f+c_{2} g\right)=c_{1} \hat{O}(f)+c_{2} \hat{O}(g)
$$

Use this condition to check if \hat{A}, \hat{B} and \hat{C} are linear operator:

$$
\begin{aligned}
\hat{A}\left(c_{1} f(x)+c_{2} g(x)\right) & =\cos (x)\left(c_{1} f(x)+c_{2} g(x)\right) \\
& =c_{1} \cos (x) f(x)+c_{2} \cos (x) g(x) \\
& =c_{1} \hat{A}(f(x))+c_{1} \hat{A}(g(x))
\end{aligned}
$$

So we know that \hat{A} is a linear operator.

$$
\begin{aligned}
\hat{B}\left(c_{1} f(x)+c_{2} g(x)\right) & =\left(c_{1} f(x)+c_{2} g(x)\right) \frac{\partial\left(c_{1} f(x)+c_{2} g(x)\right)}{\partial x} \\
& =c_{1}^{2} f(x) \frac{\partial f(x)}{\partial x}+c_{2}^{2} g(x) \frac{\partial g(x)}{\partial x}+c_{1} c_{2} f(x) \frac{\partial g(x)}{\partial x}+c_{1} c_{2} g(x) \frac{\partial f(x)}{\partial x} \\
& \neq c_{1} \hat{B}(f(x))+c_{2} \hat{B}(g(x))
\end{aligned}
$$

Thus \hat{B} is not a linear operator.

$$
\begin{aligned}
\hat{C}\left(c_{1} f(x)+c_{2} g(x)\right) & =-i \hbar \frac{\partial\left(c_{1} f(x)+c_{2} g(x)\right)}{\partial x} \\
& =c_{1}(-i \hbar) \frac{\partial(f(x))}{\partial x}+c_{2}(-i \hbar) \frac{\partial g(x)}{\partial x} \\
& =c_{1} \hat{C}(f(x))+c_{1} \hat{C}(g(x))
\end{aligned}
$$

Thus \hat{C} is a linear operator.
(b) In order for the observables of \hat{A} and \hat{C} to be known simultaneously, \hat{A} and \hat{C} must share the same eigenvectors, which means the commutator $[\hat{A}, \hat{C}]=0$. To evaluate the commutator, we should have $[\hat{A}, \hat{C}]$, which is also an operator, act on an arbitary function $f(x)$, and check if $[\hat{A}, \hat{C}] f(x)=0$. We have

$$
\begin{aligned}
& \hat{A} \hat{C} f(x)=\hat{A}\left(-i \hbar \frac{\partial f(x)}{\partial x}\right)=-i \hbar \cos (x) \frac{\partial f(x)}{\partial x} \\
& \hat{C} \hat{A} f(x)=\hat{C}(\cos (x) f(x))=-i \hbar \frac{\partial \cos (x) f(x)}{\partial x}=i \hbar \sin (x) f(x)-i \hbar \cos (x) \frac{\partial f(x)}{\partial x}
\end{aligned}
$$

SO

$$
[\hat{A}, \hat{C}] f(x)=(\hat{A} \hat{C}-\hat{C} \hat{A}) f(x)=-i \hbar \sin (x) f(x) \neq 0
$$

We get a non-zero result indicated that $[\hat{A}, \hat{C}] \neq 0$, this means we cannot know the observable of \hat{A} and \hat{C} simultaneously.
2. (a) Using $|u\rangle$ and $|d\rangle$ as our basis, the matrix representation of \hat{H} is given by:

$$
\begin{aligned}
H_{11} & =\langle u| \hat{H}|u\rangle=1 & & H_{12}=\langle u| \hat{H}|d\rangle=2 \\
H_{21} & =\langle d| \hat{H}|u\rangle=2 & & H_{22}=\langle d| \hat{H}|d\rangle=-2
\end{aligned}
$$

Note that to determine H_{21}, we have used the fact that \hat{H} is a Hermitian, so that $H_{21}=H_{12}^{*}=2$. Next we can check that $|a\rangle$ and $|b\rangle$ are eigenvectors of \hat{H} by doing

$$
\begin{aligned}
& \left(\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right)\binom{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}=2\binom{\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}} \\
& \left(\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right)\binom{\frac{1}{\sqrt{5}}}{-\frac{2}{\sqrt{5}}}=-3\binom{\frac{1}{\sqrt{5}}}{\frac{-2}{\sqrt{5}}}
\end{aligned}
$$

So $|a\rangle$ is eigenvector of \hat{H} with eigenvalue $E_{a}=2$, and $|b\rangle$ is eigenvector of \hat{H} with eigenvalue $E_{b}=-3$.
(b) We want to write $|u\rangle$ in the form of $|u\rangle=c_{a}|a\rangle+c_{b}|b\rangle$, and the expansion coefficient is given by $c_{a}=\langle a \mid u\rangle$, and $c_{b}=\langle b \mid u\rangle$. From the expansion of $|a\rangle$ and $|b\rangle$ in terms of $|u\rangle$ and $|d\rangle$, we can easily find out that

$$
\langle u \mid a\rangle=\frac{2}{\sqrt{5}}=c_{a}^{*} \quad\langle b \mid u\rangle=\frac{1}{\sqrt{5}}=c_{b}^{*}
$$

Thus

$$
|u\rangle=\frac{2}{\sqrt{5}}|a\rangle+\frac{1}{\sqrt{5}}|b\rangle .
$$

(c) We know that at $t=0$, the system is in state $|u\rangle$, i.e,

$$
|\psi(0)\rangle=|u\rangle=\frac{2}{\sqrt{5}}|a\rangle+\frac{1}{\sqrt{5}}|b\rangle
$$

Now that $|a\rangle$ and $|b\rangle$ are eigenvectors of \hat{H}, the time propagation is straight forward:

$$
|\psi(t)\rangle=\frac{2}{\sqrt{5}} e^{-2 i t}|a\rangle+\frac{1}{\sqrt{5}} e^{3 i t}|b\rangle
$$

At time t, the probability of winning, i.e, the probability of observe the system in state $|w\rangle$ is given by

$$
P=|\langle w \mid \psi(t)\rangle|^{2}
$$

Since $|w\rangle=\frac{1}{\sqrt{2}}|u\rangle+\frac{1}{\sqrt{2}}|d\rangle$, we have

$$
\langle w \mid \psi(t)\rangle=\frac{2}{\sqrt{5}} e^{-2 i t}\left(\frac{1}{\sqrt{2}}\langle u \mid a\rangle+\frac{1}{\sqrt{2}}\langle d \mid a\rangle\right)+\frac{1}{\sqrt{5}} e^{3 i t}\left(\frac{1}{\sqrt{2}}\langle u \mid b\rangle+\frac{1}{\sqrt{2}}\langle d \mid b\rangle\right)
$$

Plug in $\langle u \mid a\rangle=2 / \sqrt{5},\langle d \mid a\rangle=1 / \sqrt{5},\langle u \mid b\rangle=1 / \sqrt{5},\langle d \mid b\rangle=-2 / \sqrt{5}$, we find

$$
\begin{aligned}
& \langle w \mid \psi(t)\rangle=\frac{3 \sqrt{2}}{5} e^{-2 i t}-\frac{1}{5 \sqrt{2}} e^{3 i t} \\
& P=|\langle w \mid \psi(t)\rangle|^{2}=\frac{18}{25}+\frac{1}{50}-\frac{3}{25}\left(e^{5 i t}+e^{-5 i t}\right)=\frac{37}{50}-\frac{6}{25} \cos (5 t)
\end{aligned}
$$

When $\cos 5 t=-1$, we will have the maximum chance of winning, so we should wait for $t=\pi / 5$.
3. In this question, we want evaluate $\left.\frac{\partial\langle\hat{A}\rangle}{\partial t}=\frac{\partial\langle\psi|}{\partial t}|\hat{A}| \psi\right\rangle+\langle\psi| \hat{A} \left\lvert\, \frac{\partial|\psi\rangle}{\partial t}\right.$. To proceed, we can use the time-dependent S.E:

$$
\hat{H}|\psi\rangle=i \hbar \frac{\partial|\psi\rangle}{\partial t} \quad\langle\psi| \hat{H}=-i \hbar \frac{\partial\langle\psi|}{\partial t}
$$

plug in these two equation, we have

$$
\frac{\partial\langle\hat{A}\rangle}{\partial t}=-\frac{1}{i \hbar}\langle\psi| \hat{H} \hat{A}|\psi\rangle+\frac{1}{i \hbar}\langle\psi| \hat{A} \hat{H}|\psi\rangle=\frac{1}{i \hbar}\langle\psi|[\hat{A}, \hat{H}]|\psi\rangle
$$

We also know that the commutator is related to the uncertainty by

$$
\Delta A \Delta H \geq \frac{1}{2}|\langle[\hat{A}, \hat{H}]\rangle|
$$

Thus

$$
\frac{\Delta A}{\left|\frac{\partial\langle\hat{A}\rangle}{\partial t}\right|}=\frac{\Delta A}{\left|\frac{1}{i \hbar}\langle[\hat{A}, \hat{H}]\rangle\right|} \geq \frac{\hbar \Delta A}{2 \Delta A \Delta H}=\frac{\hbar}{2 \Delta H}
$$

