CHEM 120A Midterm 1 Solutions

Qinghui Ge

1. (a) An operator \hat{O} is said to be linear if for any pair of function f and g and scalar c_1 and c_2 , it satisfies

$$\hat{O}(c_1f + c_2g) = c_1\hat{O}(f) + c_2\hat{O}(g)$$

Use this condition to check if \hat{A} , \hat{B} and \hat{C} are linear operator:

$$\hat{A}(c_1 f(x) + c_2 g(x)) = \cos(x) (c_1 f(x) + c_2 g(x))$$

= $c_1 \cos(x) f(x) + c_2 \cos(x) g(x)$
= $c_1 \hat{A}(f(x)) + c_1 \hat{A}(g(x))$

So we know that \hat{A} is a linear operator.

$$\hat{B}(c_1f(x) + c_2g(x)) = (c_1f(x) + c_2g(x))\frac{\partial(c_1f(x) + c_2g(x))}{\partial x}$$
$$= c_1^2f(x)\frac{\partial f(x)}{\partial x} + c_2^2g(x)\frac{\partial g(x)}{\partial x} + c_1c_2f(x)\frac{\partial g(x)}{\partial x} + c_1c_2g(x)\frac{\partial f(x)}{\partial x}$$
$$\neq c_1\hat{B}(f(x)) + c_2\hat{B}(g(x))$$

Thus \hat{B} is not a linear operator.

$$\hat{C}(c_1f(x) + c_2g(x)) = -i\hbar \frac{\partial (c_1f(x) + c_2g(x))}{\partial x}$$
$$= c_1(-i\hbar)\frac{\partial (f(x))}{\partial x} + c_2(-i\hbar)\frac{\partial g(x)}{\partial x}$$
$$= c_1\hat{C}(f(x)) + c_1\hat{C}(g(x))$$

Thus \hat{C} is a linear operator.

(b) In order for the observables of \hat{A} and \hat{C} to be known simultaneously, \hat{A} and \hat{C} must share the same eigenvectors, which means the commutator $[\hat{A}, \hat{C}] = 0$. To evaluate the commutator, we should have $[\hat{A}, \hat{C}]$, which is also an operator, act on an arbitrary function f(x), and check if $[\hat{A}, \hat{C}]f(x) = 0$. We have

$$\hat{A}\hat{C}f(x) = \hat{A}\left(-i\hbar\frac{\partial f(x)}{\partial x}\right) = -i\hbar\cos(x)\frac{\partial f(x)}{\partial x}$$
$$\hat{C}\hat{A}f(x) = \hat{C}\left(\cos(x)f(x)\right) = -i\hbar\frac{\partial\cos(x)f(x)}{\partial x} = i\hbar\sin(x)f(x) - i\hbar\cos(x)\frac{\partial f(x)}{\partial x}$$

$$\mathbf{SO}$$

$$[\hat{A}, \hat{C}]f(x) = (\hat{A}\hat{C} - \hat{C}\hat{A})f(x) = -i\hbar\sin(x)f(x) \neq 0$$

We get a non-zero result indicated that $[\hat{A}, \hat{C}] \neq 0$, this means we cannot know the observable of \hat{A} and \hat{C} simultaneously.

2. (a) Using $|u\rangle$ and $|d\rangle$ as our basis, the matrix representation of \hat{H} is given by:

$$H_{11} = \langle u|H|u\rangle = 1 \qquad H_{12} = \langle u|H|d\rangle = 2$$
$$H_{21} = \langle d|\hat{H}|u\rangle = 2 \qquad H_{22} = \langle d|\hat{H}|d\rangle = -2$$

Note that to determine H_{21} , we have used the fact that \hat{H} is a Hermitian, so that $H_{21} = H_{12}^* = 2$. Next we can check that $|a\rangle$ and $|b\rangle$ are eigenvectors of \hat{H} by doing

$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix} = 2 \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{pmatrix} = -3 \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} \end{pmatrix}$$

So $|a\rangle$ is eigenvector of \hat{H} with eigenvalue $E_a = 2$, and $|b\rangle$ is eigenvector of \hat{H} with eigenvalue $E_b = -3$.

(b) We want to write $|u\rangle$ in the form of $|u\rangle = c_a |a\rangle + c_b |b\rangle$, and the expansion coefficient is given by $c_a = \langle a | u \rangle$, and $c_b = \langle b | u \rangle$. From the expansion of $|a\rangle$ and $|b\rangle$ in terms of $|u\rangle$ and $|d\rangle$, we can easily find out that

$$\langle u|a\rangle = \frac{2}{\sqrt{5}} = c_a^* \qquad \langle b|u\rangle = \frac{1}{\sqrt{5}} = c_b^*$$

Thus

$$|u\rangle = \frac{2}{\sqrt{5}}|a\rangle + \frac{1}{\sqrt{5}}|b\rangle.$$

(c) We know that at t = 0, the system is in state $|u\rangle$, i.e,

$$|\psi(0)\rangle = |u\rangle = \frac{2}{\sqrt{5}}|a\rangle + \frac{1}{\sqrt{5}}|b\rangle$$

Now that $|a\rangle$ and $|b\rangle$ are eigenvectors of \hat{H} , the time propagation is straight forward:

$$|\psi(t)\rangle = \frac{2}{\sqrt{5}}e^{-2it}|a\rangle + \frac{1}{\sqrt{5}}e^{3it}|b\rangle$$

At time t, the probability of winning, i.e, the probability of observe the system in state $|w\rangle$ is given by

$$P = |\langle w | \psi(t) \rangle|^2$$

Since $|w\rangle = \frac{1}{\sqrt{2}}|u\rangle + \frac{1}{\sqrt{2}}|d\rangle$, we have

$$\langle w|\psi(t)\rangle = \frac{2}{\sqrt{5}}e^{-2it}\left(\frac{1}{\sqrt{2}}\langle u|a\rangle + \frac{1}{\sqrt{2}}\langle d|a\rangle\right) + \frac{1}{\sqrt{5}}e^{3it}\left(\frac{1}{\sqrt{2}}\langle u|b\rangle + \frac{1}{\sqrt{2}}\langle d|b\rangle\right)$$

Plug in $\langle u|a\rangle = 2/\sqrt{5}, \ \langle d|a\rangle = 1/\sqrt{5}, \ \langle u|b\rangle = 1/\sqrt{5}, \ \langle d|b\rangle = -2/\sqrt{5}, \ \text{we find}$

$$\langle w|\psi(t)\rangle = \frac{3\sqrt{2}}{5}e^{-2it} - \frac{1}{5\sqrt{2}}e^{3it}$$
$$P = |\langle w|\psi(t)\rangle|^2 = \frac{18}{25} + \frac{1}{50} - \frac{3}{25}(e^{5it} + e^{-5it}) = \frac{37}{50} - \frac{6}{25}\cos(5t)$$

When $\cos 5t = -1$, we will have the maximum chance of winning, so we should wait for $t = \pi/5$.

3. In this question, we want evaluate $\frac{\partial \langle \hat{A} \rangle}{\partial t} = \frac{\partial \langle \psi |}{\partial t} |\hat{A}|\psi\rangle + \langle \psi |\hat{A}| \frac{\partial |\psi\rangle}{\partial t}$. To proceed, we can use the time-dependent S.E:

$$\hat{H}|\psi\rangle = i\hbar\frac{\partial|\psi\rangle}{\partial t} \qquad \langle\psi|\hat{H} = -i\hbar\frac{\partial\langle\psi|}{\partial t}$$

plug in these two equation, we have

$$\frac{\partial \langle \hat{A} \rangle}{\partial t} = -\frac{1}{i\hbar} \langle \psi | \hat{H} \hat{A} | \psi \rangle + \frac{1}{i\hbar} \langle \psi | \hat{A} \hat{H} | \psi \rangle = \frac{1}{i\hbar} \langle \psi | [\hat{A}, \hat{H}] | \psi \rangle$$

We also know that the commutator is related to the uncertainty by

$$\Delta A \Delta H \geq \frac{1}{2} \left| \left< [\hat{A}, \hat{H}] \right> \right|$$

Thus

$$\frac{\Delta A}{\left|\frac{\partial\langle\hat{A}\rangle}{\partial t}\right|} = \frac{\Delta A}{\left|\frac{1}{i\hbar}\langle[\hat{A},\hat{H}]\rangle\right|} \ge \frac{\hbar\Delta A}{2\Delta A\Delta H} = \frac{\hbar}{2\Delta H}$$