Math 1B Final Exam
 Lecture 3, Spring 2010

The exam is closed book, apart from a sheet of notes 8 "x11". Calculators are not allowed. It is your responsibility to write your answers clearly.

1. Using a trigonometric substitution, evaluate

$$
\int_{0}^{\sqrt{3} / 2} \frac{1}{\left(1-x^{2}\right)^{1 / 2}} d x
$$

Recall that $\sqrt{3} / 2=\sin \pi / 3=\cos \pi / 6$.
2. Solve the equation

$$
t \frac{d u}{d t}=u+t^{2} \cos t \quad(t>0)
$$

and find a solution that satisfies $u(\pi / 2)=0$.
3. Use substitution and integration by parts to find:

$$
\int(\cos x)^{3} e^{\sin x} d x
$$

4. Determine if the series absolutely converges, conditionally converges, or diverges.

$$
\sum_{n=1}^{\infty}(-1)^{n} \ln \left(\frac{n}{2 n+1}\right)
$$

5. Show that integral

$$
\int_{1}^{\infty} \frac{e^{x}}{x+e^{2 x}} d x
$$

converges or diverges using the comparison test.
6. Consider the differential equation

$$
\frac{d y}{d x}=\frac{1-x}{2 y}
$$

i) Sketch a direction field for the region $-1 \leq x \leq 3,0<y \leq 3 / 2$, including at least 15 points. Also include labeled axes.
ii) Solve the differential equation. Express y explicitly in terms of x.
iii) Find a solution through $x=2, y=1$, and sketch it on the direction field graph.
7. Find the integral

$$
\int_{0}^{2} \frac{x}{\left(x^{2}-1\right)^{2}} d x
$$

if it converges. If it does not converge, show why that happens.
8. Find the Taylor series for

$$
\frac{1}{2} x^{2}\left(e^{x}-e^{-x}\right)
$$

around $x=0$. What is the coefficient of x^{n} ? What is its radius of convergence?
9. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$.
i) Use the limit comparison test to show that the series is convergent.
ii) Determine whether

$$
0 \leq \sum_{n=1}^{\infty} \frac{1}{n^{2}+1} \leq \frac{\pi}{2}
$$

is true or false by comparing the series to an integral from 0 to infinity.
10. Find the Maclaurin series for

$$
x \cos x-\sin x
$$

and use that to find the limit

$$
\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{x^{3}}
$$

11. Find the radius and the interval of convergence of the power series

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{x^{n}}{2^{n} \ln n}
$$

12. Use the power series method to find the general solution to

$$
y^{\prime \prime}=x^{2} y
$$

Then, find the solution to the initial value problem $y(0)=1, y^{\prime}(0)=5$.
13. Solve the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=4 x^{2} e^{x}+e^{-x}
$$

