
Math 1B Final Exam, Solution

Prof. Mina Aganagic
Lecture 2, Spring 2011

The exam is closed book, apart from a sheet of notes 8”x11”. Calculators are not allowed.
It is your responsibility to write your answers clearly.

1. (6 points) Use substitution and integration by parts to find:∫
tanx(sec x)2 etanxdx

Solution: Substituting s = tanx, ds = (sec x)2dx we have∫
tanx(sec x)2 etanxdx =

∫
sesds.

Now we use integration by parts: u = s, du = ds, dv = esds, v = es∫
sesds = ses −

∫
esds = ses − es + C.

Going back to the original variable:∫
tanx(sec x)2 etanxdx = tanx etanx − etanx + C.

2. (6 points) Use trigonometric substitution to evaluate∫
1

t2
√
1− t2

dt

for t ∈ (0, 1).

Solution: Substitute t = sin θ, 0 < θ < π
2
, so dt = cos θ dθ and

√
1− t2 =

√
1− sin2 θ =√

cos2 θ = | cos θ| = cos θ since 0 < θ < π
2
. Then∫

1

t2
√
1− t2

dt =

∫
cos θdθ

sin2 θ cos θ
=

∫
1

sin2 θ
dθ =

∫
csc2 θ dθ = − cot θ + C.

We now go back to the original variable cot θ = cos θ
sin θ

=
√
1−t2

t
, then∫

1

t2
√
1− t2

dt = −
√
1− t2

t
+ C.



3. (7 points) First find the indefinite integral:∫
x

x2 − 3x− 4
dx,

then, compute ∫ 1

−1

x

x2 − 3x− 4
dx.

Is this a proper integral?

Solution: Using partial fractions, x2 − 3x− 4 = (x− 4)(x+ 1), then

x

x2 − 3x− 4
=

x

(x− 4)(x+ 1)
=

A

x− 4
+

B

x+ 1
.

This gives the equality x = (A+B)x+ (A− 4B), then A = 4
5
and B = 1

5
. Therefore∫

x

x2 − 3x− 4
dx =

4

5

∫
dx

x− 4
+

1

5

∫
dx

x+ 1
=

4

5
ln |x− 4|+ 1

5
ln |x+ 1|+ C.

The integral
∫ 1

−1
x

x2−3x−4
dx is improper because of the lower limit of integration x = −1

where the function has a vertical asymptote. Using the integral we just computed∫ 1

−1

x

x2 − 3x− 4
dx = lim

t→−1+

∫ 1

t

x

x2 − 3x− 4
dx

=
4

5
ln 3 +

1

5
ln 2− lim

t→−1+

(4
5
ln |t− 4|+ 1

5
ln |t+ 1|

)
= +∞

since lim
t→−1+

ln |t+ 1| = −∞.

4. (5 points) Determine if the integral∫ ∞

1

x2

1 + x2
e−xdx

converges or diverges using the comparison test.

Solution: The integrand is a nonnegative function so comparison test applies. Since
0 ≤ x2

1+x2 ≤ 1 for all x and because e−x > 0 we have that for all x

0 ≤ x2

1 + x2
e−x ≤ e−x.

Now
∫∞
1

e−x = lim
t→∞

∫ t

1
e−xdx = lim

t→∞
(−e−t + e−1) = e−1 < ∞. Since the function in the

upper bound has a finite integral we conclude, by comparison test, that
∫∞
1

x2

1+x2 e−xdx
converges.
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5. (7 points) Consider the series
∞∑
n=1

n3

(n4 + 1)2
.

i) Use the limit comparison test to show that the series is convergent.

ii) Determine whether

0 ≤
∞∑
n=1

n3

(n4 + 1)2
≤ 3

8

is true or false by comparing the series to an integral. (Hint: First find the interval
where the integral comparison test is applicable. Then, use the integral to estimate
the applicable portion of the series, and add the rest by hand.)

Solution: i) Limit compare to
∑∞

n=1
1
n5 , letting an = n3

(n4+1)2
and bn = 1

n5 ,

lim
n→∞

an
bn

= lim
n→∞

n3

(n4+1)2

1
n5

= lim
n→∞

n8

(n4 + 1)2
= lim

n→∞

1

(1 + 1
n4 )2

= 1 > 0.

Now
∑∞

n=1
1
n5 converges by p-test, p = 5 > 1, or by integral test. We conclude, by limit

comparison test, that
∑∞

n=1
n3

(n4+1)2
converges.

ii) The lower bound is clearly true since the series has nonnegative terms only, so 0 ≤∑∞
n=1

n3

(n4+1)2
. For the upper bound we compare to an integral. Let f(x) = x3

(x4+1)2
.

Clearly f is nonnegative and continuous for x ≥ 1. We need to know if f is decreasing
and if so from where it starts to decrease.

f ′(x) =
−5x6 + 3x2

(x4 + 1)3
=

x2(3− 5x4)

(x4 + 1)3
,

so f ′(x) < 0 if and only if |x| > (3/5)1/4, and in particular if x ≥ 1. The estimate for
the sum is

∞∑
n=1

n3

(n4 + 1)2
≤ 1

4
+

∫ ∞

1

x3

(x4 + 1)2
dx =

1

4
+

−1

4(x4 + 1)

∣∣∣∞
1

=
3

8
.

We have found

0 ≤
∞∑
n=1

n3

(n4 + 1)2
≤ 3

8

and so the statement in ii) is true.

6. (7 points) Determine if the series absolutely converges, conditionally converges, or di-
verges.

∞∑
n=1

(−1)n
n

n2 + 1
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Solution: The series is alternating because the sum
∑∞

n=1(−1)n n
n2+1

can be written in
the form

∑∞
n=1(−1)nbn where bn = n

n2+1
is nonnegative. We apply the alternating series

test. First the limit of {bn},

lim
n→∞

bn = lim
n→∞

n

n2 + 1
= lim

n→∞

1
n

1 + 1
n2

= 0.

Now we check that {bn} is (eventually) decreasing. We can consider d
dx

x
x2+1

= 1−x2

x2+1
< 0

if x > 1, and so the bn’s decrease. By alternating series test
∑∞

n=1(−1)n n
n2+1

converges.

To see whether the series is absolutely convergent or conditionally convergent we need
to study

∑∞
n=1

n
n2+1

. We can limit compare it to
∑∞

n=1
1
n
,

lim
n→∞

n
n2+1
1
n

= lim
n→∞

n2

n2 + 1
= lim

n→∞

1

1 + 1
n2

= 1 > 0

and since the harmonic series diverges (p-test with p = 1 or integral test) we conclude
that

∑∞
n=1

n
n2+1

diverges.

Thus
∑∞

n=1(−1)n n
n2+1

is conditionally convergent.

7. (7 points) Find the radius and the interval of convergence of the power series.

∞∑
n=1

xn

2nn2

Using the ratio test and calling an = xn

2nn2

lim
n→∞

∣∣∣an+1

an

∣∣∣ = lim
n→∞

|x| 2nn2

2n+1(n+ 1)2
= lim

n→∞

|x|
2

( n

n+ 1

)2

=
|x|
2
,

so the series converges if |x|/2 < 1 and diverges if |x|/2 > 1. The radius of convergence
is R = 2.

We know the series converges in the interval (−2, 2). We now look at the endpoints. For
x = 2

∞∑
n=1

2n

2nn2
=

∞∑
n=1

1

n2
,

which converges by p-test with p = 2 > 1, or by integral test.

For x = −2
∞∑
n=1

(−2)n

2nn2
=

∞∑
n=1

(−1)n

n2
,

which converges because it is absolutely convergent, or by an application of the alter-
nating series test.

The interval of convergence of the power series is I = [−2, 2].
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8. (7 points) Let g(x) =
x

4 + x

i) Find the Taylor series expansion of g(x) centered at x = 1.

ii) Find g(21)(1), the 21st derivative of g at x = 1.

Solution: i) First note that g(x) = x
4+x

= x+4−4
4+x

= 1− 4
4+x

and so

g(x) = 1− 4

4 + x
= 1− 4

5 + (x− 1)
= 1− 4

5

1

1 + 1
5
(x− 1)

= 1− 4

5

∞∑
n=0

(−1)n

5n
(x− 1)n,

and the expansion is valid for |1
5
(x− 1)| < 1, that is for −4 < x < 6.

ii) The coefficient of (x − 1)21 in the power series expansion of g around x = 1 is given

by g(21)(1)
21!

. Using i) we find

g(21)(1) =
4

522
21!

9. (7 points) Consider
f(x) = e2x − e−2x

i) Find the Taylor series around x = 0. What is the coefficient of xn?

ii) What is its radius of convergence?

iii) Using the power series obtained in i) compute limx→0(f(x)/x)

Solution: i) We can use the Taylor series of the exponential to find the Taylor series of
f

e2x =
∞∑
n=0

(2x)n

n!
=

∞∑
n=0

2nxn

n!

e−2x =
∞∑
n=0

(−2x)n

n!
=

∞∑
n=0

(−1)n2nxn

n!

and both power series have radius of convergence R = ∞. Then the Taylor series of f is

∞∑
n=0

2nxn

n!
−

∞∑
n=0

(−1)n2nxn

n!
=

∞∑
n=0

(1− (−1)n)
2n

n!
xn,

that can be rewritten as
∞∑
n=0

22n+2

(2n+ 1)!
x2n+1 (1)

where we used that 1− (−1)n equals 0 if n is even and equals 2 is n is odd.

The coefficient of xn is (1− (−1)n)2
n

n!
or equivalently, it is 0 if n is even and 2n+1

n!
if n is

odd.
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ii) The radius of convergence is R = ∞ since it is obtained as the sum of two power
series with infinite radius of convergence, and the radius of convergence of the sum of
power series is at least the smallest between the two, which in this case is infinity.

We can also take the expression in (1) and apply the ratio test.

iii) From i) we have

f(x) =
∞∑
n=0

22n+2

(2n+ 1)!
x2n+1 = 4x+

∞∑
n=1

22n+2

(2n+ 1)!
x2n+1,

and
f(x)

x
= 4 +

∞∑
n=1

22n+2

(2n+ 1)!
x2n.

Since
∞∑
n=1

22n+2

(2n+1)!
x2n → 0 as x → 0 we get limx→0 f(x)/x = 4.

10. (8 points) Consider the differential equation

dy

dx
=

y2

(x+ 1)2

i) Solve the differential equation. Express y explicitly in terms of x.

ii) Find a solution through x = 1, y = 1.

iii) Find the orthogonal trajectory through x = 1, y = 1.

Solution: i) Using the method for separable equations we get∫
dy

y2
=

∫
dx

(x+ 1)2
, −1

y
= − 1

x+ 1
+ C, y(x) =

x+ 1

1− C(x+ 1)
.

ii) If y(1) = 1, we obtain C = −1
2
, so the solution is

y(x) =
2(x+ 1)

3 + x
.

iii) To find the orthogonal trajectories we need to solve the differential equation

dy

dx
= −(x+ 1)2

y2

that is again separable.∫
y2dy = −

∫
(x+ 1)2dx,

y3

3
= −(x+ 1)3

3
+ C, y(x) = (3C − (x+ 1)3)1/3.

For the one passing through x = 1, y = 1 we obtain C = 3, then

y(x) = (9− (x+ 1)3)1/3.
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11. (7 points) Solve the equation

x
dp

dx
= p+ x2ex (x > 0)

and find a solution that satisfies p(1) = 1.

Solution: We rewrite the equation as

p′ − 1

x
p = xex.

The integrating factor is e
∫
− dx

x = e− ln |x| = eln
1
|x| = 1

|x| =
1
x
since x > 0. Following the

method of the integrating factor,(1
x
p
)′

= ex,
1

x
p =

∫
exdx = ex + C, p(x) = xex + Cx.

Now if p(1) = 1 we need C = 1− e and

p(x) = xex + (1− e)x.

12. (10 points) Find the general solution to the differential equation

y′′ + 2y′ + y = x2 + x+ 1

and find the solution to the boundary value problem y(0) = 1 , y(1) = 2.

Solution: We start with the homogeneous equation y′′+2y′+ y = 0 with characteristic
equation r2+2r+1 = 0, so r = −1 is the only solution. The solution to the homogeneous
equation is

yc = C1e
−x + C2xe

−x.

We use undetermined coefficients to find a particular solution. Set yp = Ax2 +Bx+ C,
so y′p = 2Ax+B, y′′p = 2A. Plugging it into the equation gives

Ax2 + (4A+B)x+ (2A+ 2B + C) = x2 + x+ 1

from where A = 1, 4A + B = 1, 2A + 2B + C = 1. This gives A = 1, B = −3, C = 5
and the particular solution is

yp(x) = x2 − 3x+ 5.

The general solution is y = C1e
x + C2xe

x + x2 − 3x+ 5.

For the boundary value problem, y(0) = C1 + 5 = 1 and y(1) = C1e
−1 + C2e

−1 + 3 = 2
that gives C1 = −4 and C2 = 4− e. The solution is

y(x) = −4e−x + (4− e)xe−x + x2 − 3x+ 5.
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13. (5 points) For the differential equation y′′ + y = sec x

i) Show that y = cos(x) ln | cos x|+ x sinx is a solution to the given differential equa-
tion.

ii) Find the general solution to the equation.

Solution: i)The derivatives are

d2

dx2
cos(x) ln | cos x| = − cosx+

sin2 x

cos x
− cos(x) ln | cosx|,

d2

dx2
x sin x = 2 cosx− x sin x.

We see that y′′ + y = sin2 x
cosx

+ cosx = 1
cosx

= sec x.

ii) The general solution is given by the sum of the solution to the homogeneous equation
and a particular solution. The characteristic equation of the homogeneous equation is
r2 + 1 = 0 with roots r1 = i, r2 = −i, so yc = C1 cosx + C2 sin x. In i) we are given a
particular solution so the general solution is

y = C1 cosx+ C2 sin x+ cos(x) ln | cos x|+ x sinx.

14. (11 points) Follow the steps below to find the general solution to the given equation by
using the power series method

y′′ + 2xy′ − y = 0

i) Write power series for y, y′ and y′′ and find the recurrence for the coefficients.

ii) Use the first part to write c2, c4 and c6 in terms of c0 and c3, c5 and c7 in terms of
c1. Here c2, c3, etc are the coefficients in the power series expansion of y.

iii) Use the previous part to write a general formula for the coefficients. Hint: even
coefficients and odd coefficients will have a slightly different formula, so write two
separate formulas for each case, even and odd.

iv) Write the general solution to the equation.

v) Find the radius of convergence of the solution. (Hint: Find the radii of convergence
of any two linearly independent solutions, and take the smallest of the two.),

vi) Find the solution to the initial value problem y(0) = 1, y′(0) = 1.

Solution: i) Setting y =
∑∞

n=0 cnx
n we have

y′ =
∞∑
n=0

ncnx
n−1, y′′ =

∞∑
n=0

n(n− 1)cnx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n.

Plugging into the equation gives

∞∑
n=0

(n+ 2)(n+ 1)cn+2x
n + 2x

∞∑
n=0

ncnx
n−1 −

∞∑
n=0

cnx
n = 0
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or equivalently
∞∑
n=0

((n+ 2)(n+ 1)cn+2 + 2ncn − cn)x
n = 0.

From here we obtain the recurrence

cn+2 = − 2n− 1

(n+ 2)(n+ 1)
cn, for n ≥ 0.

ii) Using i) we get

c2 =
1

2
c0, c4 = − 3

3 · 4
c2 = − 3

4!
c0, c6 = − 7

5 · 6
c4 =

3 · 7
6!

c0

c3 = − 1

2 · 3
c1, c5 = − 5

4 · 5
c3 =

5

5!
c1, c7 = − 9

8 · 9
c5 = −5 · 9

9!
c1.

iii) We find that in general

c2n =
(−1)n−1 3 · 7 · 11 · · · (4n− 5)

(2n)!
c0, for n ≥ 2,

c2 =
1

2
c0,

c2n+1 =
(−1)n 1 · 5 · 9 · · · (4n− 3)

(2n+ 1)!
c1, for n ≥ 1.

iv) The general solution is

y =c0

(
1 +

1

2
x2 +

∞∑
n=2

(−1)n−1 3 · 7 · 11 · · · (4n− 5)

(2n)!
x2n

)
+ c1

(
x+

∞∑
n=1

(−1)n 1 · 5 · 9 · · · (4n− 3)

(2n+ 1)!
x2n+1

)
.

v) The radius of convergence of the first linearly independent solution (the one multiplied
by c0).

lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x2| lim
n→∞

4n− 1

(2n+ 1)(2n+ 2)

= |x2| lim
n→∞

4/n− 1/n2

(2 + 1/n)(2 + 2/n)

= 0,

Then the radius of convergence is R = ∞. For the second linearly independent solution

lim
n→∞

∣∣∣an+1

an

∣∣∣ = |x2| lim
n→∞

4n+ 1

(2n+ 2)(2n+ 3)
= 0,
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and thus the radius of convergence is R = ∞. Then the radius of convergence of the
solution in iv) is R = ∞.

vi) Evaluating y(0) = c0 = 1 and y′(0) = c1 = 1 and the solution is

y =1 +
1

2
x2 +

∞∑
n=2

(−1)n−1 3 · 7 · 11 · · · (4n− 5)

(2n)!
x2n+

+ x+
∞∑
n=1

(−1)n 1 · 5 · 9 · · · (4n− 3)

(2n+ 1)!
x2n+1.
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