University of California, Berkeley - College of Engineering

Department of Electrical Engineering and Computer Sciences
Summer 2016 Instructors: Shreyas Chand, Justin Hsia 2016-07-25

CS61C MIDTERM 2

Last Name (Please print clearly)						
First Name (Please print clearly)						
Student ID Number						
Circle the name of your Lab TA	Alex	Brian	Jinglin	Nate	Reese	Steven
Name of the person to your: Left \| Right						
All my work is my own. I had no prior knowledge of the exam contents nor will I share the contents with others in CS61C who haven't taken it yet. (please sign)						

Instructions

- This booklet contains 7 pages including this cover page. The back of each page is blank and can be used for scratch work, but will not be graded (i.e. not even scanned into Gradescope).
- Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats, headphones, and watches. Place everything except your writing utensil(s), cheat sheet, and beverage underneath your seat.
- You have 80 minutes to complete this exam. The exam is closed book: no computers, tablets, cell phones, wearable devices, or calculators. You are allowed one page (US Letter, double-sided) of handwritten notes.
- There may be partial credit for incomplete answers; write as much of the solution as you can.
- Please write your answers within the boxes and blanks provided within each problem!

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	Total
Possible Points	10	10	11	11	10	4	56

If you have the time, feel free to doodle on this front page!
\qquad

Question 1: Synchronous Digital Systems (10 pts)

Consider the circuit below for the following questions. Logical gates incur a 10 ns combinational logic delay. Registers have a CLK-to-Q delay of 5 ns and a setup time constraint of 15 ns .

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

a) Write the boolean expression for X in terms of A, B, and C . Only use the AND, OR and NOT logical operators, and leave the expression in its UNSIMPLIFIED form. (You are welcome to use the provided truth table, but it is NOT required and NOT graded.)
b) Given the following boolean expression for a different circuit, simplify it to use the fewest possible AND, OR, and NOT logical operators.

$$
x=\overline{a+d}+a \cdot \bar{d}+\bar{b} \cdot \bar{c}
$$

c) For the circuit above (part a), calculate the minimum clock period that will allow the circuit to function correctly. Remember to include units.
e) Assuming the hold time constraint of the registers is 20 ns , calculate the minimum combinational logic delay needed per logic gate to allow the circuit (part a) to function correctly. Remember to include units.
\square
\qquad

Question 2: Datapath and Control (10 pts)

Consider adding the new instruction lweq to our existing MIPS datapath. This instruction is intended to load into $\$ r d$ a word from memory at the address specified by the contents of $\$ r$ s offset by the shamt value if the values in \$rt and \$rs match. Below you'll find the RTL-esque description as well as a set of regular MIPS instructions that are equivalent to a call to lweq.

Instruction	Operation
lweq rd, rs, rt, shamt	if $(R[r s]==R[r t]) \quad R F[r d]<M[R[r s]+($ SignExt(shamt $) \ll 2)]$

lweq \$t0 \$t1 \$t2-2 $\quad \Leftrightarrow \quad$| bne \$t1 \$t2 skip |
| :--- |
| lw \$t0 - 8(\$t1) |

a) If we want to use the pre-existing R-type instruction format for lweq and decide to repurpose the shamt field to hold the memory address offset, what is the largest and smallest possible byte offset that can be applied to the value stored in \$rs?

Most Positive:
Most Negative:

Based on the MIPS datapath diagram shown below, choose the modifications required in the dashed boxes to execute the new instruction correctly.

\qquad
b) For box (b), circle the number below for the circuitry required:

c) For box (c), circle the number below for the circuitry required:

d) Based on the MIPS datapath diagram shown on the previous page, fill in the control signal values necessary to execute the lweq instruction correctly.

Iweq	RegDst	ExtOp	MEMWr	MemToReg	Jump	Branch
1						

\qquad

Question 3: Pipelining (11 pts)

Answer the following questions based on the following iterative version of toLower (char *p) that we saw on Midterm 1. We are running the code on a 5 -stage pipelined MIPS CPU.

1	tolower:	addu	\$v0,	\$0, \$0		count $=0$
2	loop:	lbu	\$t0,	0(\$a0)		read char using \$a0
3		bne	\$t0,	\$zero, label		check for null terminator
4		jr	\$ra			return
5	label:	ori	\$t0,	\$t0, 0x20		to lowercase
6		sb	\$t0,	0(\$a0)		store char
7		addiu	\$a0,	\$a0, 1		move to next char
8		addiu	\$v0,	\$v0, 1		count++
9		j loop				iterate

a) If $\$ a 0$ points to the string " C ", how many instructions are executed just within toLower before it returns (but including the jr)? Don't include hazards and nops/stalls/bubbles.

b) If there were no stalls, how many clock cycles would it take to go through the first iteration of the loop (lines $2-8$) for the function call described in part (a)?

c) Below are the maximum delays through each of the datapath stages. Fill in the table with the latency and throughput for single-cycle and pipelined CPUs. Don't forget units. You may use fractions.

IF: 200 ps, ID: 100 ps, EX: 200 ps, MEM: 350 ps, WB: 150 ps

d) Next to each line below, write " Y " if it causes a data hazard (i.e. requests the data) even with forwarding, "M" if it causes a data hazard only without forwarding, or " N " otherwise:

Line 2 \qquad Line 3 \qquad Line 4 \qquad Line 6 \qquad Line 9 \qquad
e) If our CPU implements the jump delay slot, circle ONE line below that you could move into the delay slot below Line 9:
Line 2
Line 6
Line 7
None
f) We decide to use branch prediction of always not taken, but find that toLower executes a lot of nop instructions for long input strings. Describe changes to our code to improve the performance using the lines below.

SID: \qquad

Question 4: Caches (11 pts)

We have a 64 KiB address space and two different caches. Both are 1 KiB , direct-mapped caches with random replacement and write-back policies. Cache \mathbf{X} uses 64 B blocks and Cache \mathbf{Y} uses 256 B blocks.
a) Calculate the TIO address breakdown for Cache \mathbf{X} :

Tag	Index	Offset

b) During some part of a running program, Cache Y's management bits are as shown below. Four options for the next two memory accesses are given ($\mathrm{R}=$ read, $\mathrm{W}=$ write). Circle the option that results in data from the cache being written to memory.

Slot	Valid	Dirty	Tag
00	0	0	100001
01	1	1	010101
10	1	0	111000
11	0	0	000011

(1) R $0 \times 4 \mathrm{C} 00, \mathrm{~W} 0 \times 5 \mathrm{C} 00$
(2) W $0 x 5500, \mathrm{~W} 0 \times 7 \mathrm{~A} 00$
(3) $\mathrm{W} 0 \times 2300, \mathrm{R} 0 \times 0 \mathrm{FO} 0$
(4) R $0 \times 3000, R 0 \times 3000$
c) The code snippet below loops through a character array. Give the value of LEAP that results in a Hit Rate of $15 / 16$ for Cache \mathbf{Y}.

```
\#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // \&string = 0x8000
for(i \(=0 ; 1<A R R A Y \_S I Z E ; i+=\) LEAP) \{
    string[i] |= 0x20; // to lower
\}
```

d) For the loop shown in part (c), let LEAP = 64. Circle ONE of the following changes that increases the hit rate of Cache \mathbf{X} :

Increase Block Size Increase Cache Size

Add a L2\$
Increase LEAP
e) For the following cache access parameters, calculate the AMAT. All miss and hit rates are local to that cache level. Please simplify and include units.

L1\$ Hit Time	L1\$ Miss Rate	L2\$ Hit Time	L2\$ Hit Rate	MEM Hit Time
2 ns	40%	20 ns	95%	400 ns

Question 5: Floating Point (10 pts)

Assume integers and IEEE 754 single precision floating point are 32 bits wide.
a) Convert from IEEE 754 to decimal: $\mathbf{0 x C 0 9 0 0 0 0 0}$

b) What is the smallest positive integer that is a power of 2 that can be represented in IEEE 754 but not as a signed int? You may leave your answer as a power of 2.
c) What is the smallest positive integer x such that $x+0.25$ can't be represented? You may leave your answer as a power of 2 .

d) We have the following word of data: 0xFFC00000. Circle the number representation below that results in the most negative number.

Unsigned Integer
Two's Complement
Floating Point
e) If we decide to stray away from IEEE 754 format by making our Exponent field 10 bits wide and our Mantissa field 21 bits wide. This gives us (circle one):

MORE PRECISION // LESS PRECISION

Question 6: Performance (4 pts)

We are using a processor with a clock period of 1 ns .
a) Program A contains 1000 instructions with a CPI of 1.2. What is the CPU time spent executing program A?

b) Program B contains 500 instructions but accesses memory more frequently, what is the maximum CPI that program B can have without executing slower than program A ?
\square

