
	
1	

CS194-15	 Fall	 2016	 Midterm	 1	
	
	
	
	

Name:						 	
	

Student	Id:						 	
	

Person	to	your	left:						 	
	

Person	to	your	right:						 	
	

	
	

Q1:						 	(46	points)	
	

Q2:						 (25	points)	
	

Q3:						 (28	points)	
	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Read	all	of	 the	 following	 information	before	 starting	 the	exam:	

	
	

• Show	all	work,	clearly	and	in	order,	 if	you	want	to	get	full	credit.	 I	reserve	the	right	to	
take	off	 points	if	I	cannot	see	how	you	arrived	at	your	answer	(even	if	your	final	answer	is	
correct).	

• Circle	or	otherwise	 indicate	your	 final	answers.	

• Please	keep	your	written	answers	brief;	be	clear	and	to	the	point.	 I	will	take	points	off	for	
rambling	 and	for	incorrect	or	irrelevant	statements.	

• This	test	has	3	problems.	Check	to	make	sure	that	your	test	booklet	has	all	pages!	

• Good	luck!	



	
2	

1. (46	points)		Short	Answer	(13	questions)	
	

a. (3	pts)	 What	is	load	imbalance?	Give	an	example.	
	
Load	Imbalance	is	what	occurs	when	1	thread	does	a	lot	more	“work”	than	another	thread	and	
subsequently	takes	a	lot	longer	to	finish.	For	example	in	the	Mandelbrot	set,	some	of	the	darker	
regions	take	a	lot	longer	to	calculate	than	the	lighter	regions.	So	if	one	thread	has	to	do	the	dark	
regions	and	another	the	light,	the	dark	thread	would	take	much	longer.	
	
	
	
	
	
	
	

b. (2	pts)	 What	is	the	difference	between	concurrency	and	parallelism?	
	
	
Concurrency	is	when	multiple	tasks	are	logically	active	at	the	same	time.	Parallelism	is	when	they	are	
actually	active	at	the	same	time.	
	
	
	
	
	

c. (4	pts)	 What	are	TLBs	and	how	do	they	impact	performance?	
	
A	translation	lookaside	buffer	is	a	memory	cache	that	stores	recent	translations	of	virtual	memory	to	physical	
addresses	for	faster	retrieval.	When	an	address	is	searched	in	the	TLB	and	not	found,	we	must	go	to	the	
physical	memory,	which	takes	a	lot	longer.		
	
	
	
	
	
	
	
	
	
	

d. (2	pts)	 In	Homework	1,	why	were	profiled	times	incorrect	if	we	did	not	print-out	the	final	index	
after	pointer	chasing?	
	
Because	the	compiler	would	optimize	the	program	and	not	store	the	result	when	it	sees	that	we	never	use	it.	
Thus	it	saves	many	clock	cycles	and	we	get	a	faster	profiled	time.	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
3	

e. (4	pts)	 What	is	Moore’s	Law,	specifically	what	does	it	say	about	the	growth	in	the	number	
of	transistors?	
	
Moore’s	law	says	the	number	of	transistors	per	square	inch	on	an	integrated	circuits	will	double	every	
18	months	
	

f. (4	pts)	 	Given	more	transistors	through	Moore’s	Law,	why	use	them	to	create	caches?	What	are	
the	advantages	and	disadvantages	of	making	caches	larger?	Why	create	a	hierarchy	of	L1	and	L2	caches?		
	
	
Given	the	processor-memory	gap,	in	that	memory	is	improving	at	a	much	slower	rate	than	
processors,	we	used	a	tiered	approach	to	caches	to	hide	this	gap.	Creating	a	larger	cache	means	we	
have	slower	lookup	times	and	thus	a	lower	bandwidth.	Having	a	smaller	cache	is	the	opposite.	Thus	
to	take	advantage	of	a	high	bandwidth	and	fast	lookup	times,	with	a	larger	amount	of	memory.	We	
use	a	cache	hierarchy.	
	
	

g. (5	pts)	 Why	do	we	use	blocked	version	of	matrix	multiply	routines?	What	is	a	blocked	for	
loop?	Explain	why	this	will	have	significant	speed	increases?	
	
Blocking	a	for	loop	means	that	we	only	computer	on	a	block	that	is	cache	aligned.	(the	width	is	the	size	
of	one	line	of	the	cache)	this	takes	advantage	of	the	spatial	locality).	Cache	blocking	attempts	to	
maximize	the	ratio	of	cache	hits	to	cache	misses.	
	

h. (8	pts)	 Name	and	briefly	explain	4	(we	covered	5	in	lecture)	micro-architectural	
improvements	that	have	led	to	significant	processor	speed	increases.	

	
Superscalar,	pipelining,	out	of	order	execution,	SIMD,	hardware	assisted	multithreading.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
4	

i. (4	pts)	 A	non-pipelined	basic	processor	has	a	latency	of	64	ns	for	each	instruction.	If	we	
split	the	processor	into	16	perfectly	pipelined	stages,	what	is	the	new	latency	per	instruction?	
What	was	the	throughput	before	and	after	the	pipelining?	Make	sure	to	use	the	correct	units.	
Also	please	ignore	any	additional	latency	induced	by	the	introduction	of	pipeline	stages.		
	
The	latency	stays	64	ns.	Thoughput	before:	1	inst	/	64	ns.	Throughput	after:	1	inst	/	4	ns.	Throughput	
is	increased	by	16.	
	
	
	
	
	
	

j. (2	pts)	 How	does	pipe	and	filter	pattern	help	to	enforce	modularity?	
	

	
Each	filter	in	pipe	and	filter	is	its	own	“module”	with	a	defined	input	and	output	that	can	be	treated	a	black-box	to	
other	programmers.	
	
	
	

k. (2	pts)	 How	does	modularity	help	the	chief	architect	of	a	software	development	team?	
	
It	helps	the	architect	plan	out	workflow,	and	high	level	decisions	on	priorities,	and	to	be	able	to	
convey	the	architecture	efficitively	to	the	team.	
	
	
	
	
	
	
	
l. (2	pts)	 Which	of	the	following	is	true?	(circle	1	or	2	answers)	

[X	]	1.	When	you	use	gcc	to	compile	OpenMP	directives,	the	resulting	assembly	code	looks	
a	lot	like	pthreads.	
[	]	2.	When	you	use	gcc	to	compile	pthreads	code,	the	resulting	assembly	code	looks	a	lot	
like	OpenMP	directives.	
	
	
	
	
	
	
	
	

m. (4	pts)	 Consider	the	following	code.	Under	what	conditions	do	the	two	addition	
instructions	take	1	cycle	and	what	micro	architectural	improvements	allow	this? 
 
   int a, b, c, d; 
															…	
															…	
															…	
   b = a + b; 
   c = c + d; 
	

	 If	all	the	values	are	loaded	into	the	registers	already,	these	two	addition	instructions	could	
take	1	cycle,	because	of	Superscalar	the	processor	has	multiple	addition	logical	units.	



	
5	

	

2. (25	points)		Roofline	Model	
	
	

//A = a vector that we’ll compute the histogram of. Assume that each value A[i] is in the range [0, 1]. 

//N = length of A 

//H = histogram output  

//B = number of bins in histogram H. (initialized to zeros) 

void histogram ( f loat* A, int N, f loat* H,  int  B) 

{ 
      #pragma omp parallel for //for part (d) 
      #pragma omp parallel { //for part (e) 
      #pragma omp single { //for part (e) 

f  o r  ( i  n t   i  =  0 ;  i  < N;   i ++) //iterate over input 
 
   f  o r  ( i  n t   j  =  0 ;  j  < B;   j ++) //iterate over histogram bins 
       #pragma omp task { //for part(e) 

             float bin_begin = float(j)/B; //which histogram bin are we looking at? 
 

 i  f  (A[i] <= bin_begin) 
    #pragma omp critical {//for part (d) 
  #pragma omp critical {//for part(e) 
   H[j] = H[j] + A[i] 
 } 
 } 
    break; //move onto next index i 
} 

     } 
     } 

} 

Listing 1: Serial Naive Histogram Computation 

 
	
These	are	examples	of	floating-point	operations:	−  +  × ÷ > < ≤ ≥	
	
	

a.	(5	pts)	 The	number	of	floating-point	operations	in	histogram(	)	depends	on	the	input	data.	
Given	fixed	values	of	N	and	B,	what	is	the	minimum	number	of	FLOPS	that	need	to	be	computed?		
				If	N=100,	give	an	example	of	a	vector	A	that	would	hit	this	minimum	number	of	FLOPS.	
	
3N	Flops	(one	FLOP	to	compute	bin_begin;	one	FLOP	to	compare	A[i]	to	bin_begin,	and	one	FLOP	to	
update	H[j]).	
	
A	=	[0,	0,	0,	0,	0,	…	,	0]	
	

b.	(5	pts)	 Given	N	and	B,	what	is	the	maximum	number	of	FLOPS	that	could	need	to	be	
computed	by	histogram(	)?	Give	an	example	vector	A	that	would	hit	this	maximum	number	of	FLOPS.	

	
2BN	FLOPS	(we	will	also	accept	2BN	+	N	FLOPS)	
	
A	=	[1,1,1,1,	…	,1]	(we	will	also	accept	A	=	[(B-1)/B,	(B-1)/B,…(B-1)/B].	
	
	
	
	
c.	(3	pts)	 If	the	program	takes	T	seconds,	what	is	the	peak	GFLOP/S	this	program	would	

achieve?	
	
NB	*10e-9/	T	
	
	
	
	



	
6	

	
	
d.	(6	pts)	 Using	OpenMP,	parallelize	histogram(	)	using	the	omp	for.	You	can	rewrite	the	

code	below,	or	you	can	write	your	changes	directly	on	Listing	1.	Be	careful	of	race	conditions!		
	
SEE	CODE	
	
	
	
	
	
	
	
	
e.	(6	pts)	 Using	OpenMP,	parallelize	histogram(	)	using	the	omp	task.	You	can	rewrite	the	

code	below,	or	you	can	write	your	changes	directly	on	Listing	1.	Be	careful	of	race	conditions!		
	
SEE	CODE	

For	reference,	here	are	some	OpenMP	compiler	
directives:

#pragma	omp	parallel		
#pragma	omp	parallel	for		
#pragma	omp	single	
#pragma	omp	critical	
#pragma	omp	task		
#pragma	omp	taskwait		

as	well	as	some	OpenMP	runtime	library	functions:		
int	omp_get_num_threads(void);		
int	omp_get_thread_num(void);	

as	well	as	some	OpenMP	scheduling:		
schedule(static);		
schedule(dynami



8	

7	

	
void worker(S *struct_ptr) { 
 
 
 int action = rand() % 100; 
 

if ( (action == struct_ptr->action) { 
 pthread_mutex_lock(struct_ptr->not_likely_lock); 

struct_ptr->not_likely_counter++; 
 

struct_ptr->not_likely_array[rand() % 100]++; 
  pthread_mutex_unlock(struct_ptr->not_likely_lock); 

 

} else { 
 pthread_mutex_lock(struct_ptr->likely_lock); 

struct_ptr->likely_counter++; 
 
struct_ptr->likely_array[action]++; 
pthread_mutex_lock(struct_ptr->likely_lock); 

} 

} 
 

 

void foo(int N) { 
       pthread_t tid[N]; 
 S *predefined_struct; 
 
 //initialize and load in random values to predefined_struct 

… 
 
pthread_mutex_init(predefined_struct->likely_lock, NULL); 
pthread_mutex_init(predefined_struct->not_likely_lock, NULL); 
for ( int  i  =  0 ;  i  < N;   i ++)  { 

 
pthread_create(&tid[i], NULL, &worker, predefined_struct); 
 

 } 
  
 for (int i = 0; i < N; i++){ 
  pthread_join(&tid[i]); 

} 
pthread_mutex_destroy(predefined_struct->likely_lock); 
pthread_mutex_destroy(predefined_struct->not_likely_lock); 

 
} 
 

 

 

	

3. (28	points)		Pthreads,	etc…	
	
	

a. (14	pts)	 Parallelize	the	code	above	using	PThreads	(reference	functions	below),	be	
careful	of	data	races	and	concurrency	issues	since	we	are	passing	by	reference	the	same	data	
structure	to	each	thread	(we	don’t	want	to	accidentally	overwrite	data	or	seg	fault).	You	can	
pseudocode	for	up	to	10	points.	You	need	to	create	N	threads	(	pthread_t tid [N];	)	
	
	
	



8	

8	

	

b. (4	pts)	 Write	a	memory	efficient	data	structure	for	struct S	based	on	the	code	
above.	
	
struct S {  
   int action; 
   pthread_mutex_t *likely_lock; 
   int likely_counter; 
   int[100] likely_array; 
   pthread_mutex_t *not_likely_lock 
   int not_likely_counter; 
   int[100] not_likely_array; 
}; 
	

c. (4	pts)		 Write	a	memory	inefficient	data	structure	struct S	based	on	the	code	above	
and	justify	its	inefficiency	using	the	memory	hierarchy.	
	
struct S {  
   int action; 
   int[100] not_likely_array; 
   int[100] likely_array; 
   int not_likely_counter; 
   pthread_mutex_t *likely_lock; 
   int likely_counter; 
   pthread_mutex_t *not_likely_lock; 
};	

d. (6	pts)		 Now	use	hold-and-cold	splitting	in	order	to	write	a	memory	efficient	data	
structure	for	struct S.	Once	again	please	justify	your	answer.	You	can	assume	that	the	code	
for	handling	your	data	structure	does	not	need	to	be	exactly	the	same	as	the	original	code	in	the	
question;	in	other	words	assume	that	there	exists	similar	but	not	identical	code	that	performs	
the	same	task	in	spirit.	(Hint:	You	will	need	2	data	structures)	

struct S {     struct S2 { 
int action;     pthread_mutex_t *not_likely_lock; 
pthread_mutex_t *likely_lock;  int not_likely_counter; 
int likely_counter;    int[100] not_likely array; 
int[100] likely_array; 
struct S2* not_likely_struct 
 
 
};     };	
	

	

	

	

	

	

	

	

	

	
	



8	

9	

	

Pthread	reference:		

	
pthread_create( )   

 

 
int pthread_create ( 

  

 
pthread_t *thread, 

  

 const pthread_attr_t *attr,   

 void *(*start_routine)(void *),   

 
void *arg); 
 

 

	
pthread_join( )   

 

 
int pthread_join ( 

  

 
pthread_t thread, 

  

 
void **value_ptr); 
 

 

pthread_mutex_lock( )   

 

 
int pthread_mutex_lock ( 

  

 
pthread_mutex_t *mutex); 

  

   
 

 

 
Locks an unlocked mutex. If the mutex is already locked, the calling thread blocks until the thread that currently 
holds the mutex releases it.   

 

 

 pthread_mutex_unlock( )   

 

 
int pthread_mutex_unlock ( 

  

 pthread_mutex_t *mutex);   

   
 

 

 

Unlocks a mutex. The scheduling priority determines which blocked thread is resumed. The resumed  
thread may or may not succeed in its next attempt to lock the mutex, depending upon whether  
another thread has locked the mutex in the interval between the thread's being resumed and its issuing 
the pthread_mutex_lock call.  
 
pthread_mutex_init( )  
 

 

 
int pthread_mutex_init ( 

  

 
pthread_mutex_t *mutex, 

  

 const pthread_mutexattr_t *attr);   

   
 

 

 

Initializes a mutex with the attributes specified in the specified mutex attribute object. Ifattr is NULL,  
the default attributes are used.  
 
pthread_mutex_destroy( )   

 

 
int pthread_mutex_destroy ( 

  

 pthread_mutex_t *mutex);   

   
 

 

 Destroys a mutex.  
 

 
Locking syntax: 
 
      pthread_mutex_t lock; 
      pthread_mutex_init(&lock, NULL); 
            … 
      pthread_mutex_lock(&lock); 
            … //critical section 
      pthread_mutex_unlock(&unlock); 
            … 
      pthread_mutex_destroy(&lock); 
 
 
 
 
 
 

 



8	

10	

 
 
 
 
  
   

  

Page	left	blank	intentionally	


