First Midterm Examination Closed Books and Closed Notes Answer Both Questions for Maximum Credit

Question 1

A Particle in Motion on a Horizontal Plane (25 POINTS)

As shown in Figure 1, a particle of mass m is free to move on a smooth circular track of radius R_0 . The particle is connected to a fixed point A by a spring of stiffness K and unstretched length $\ell_0 = 0$. A gravitational force $-mg\mathbf{E}_z$ acts on the particle.

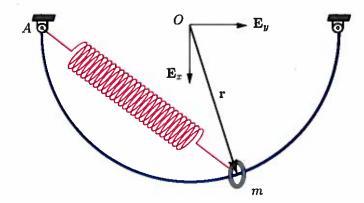


Figure 1: Schematic of a particle of mass m which is free to move on a circular track of radius R_0 . A vertical gravitational force $-mg\mathbf{E}_z$ acts on the particle.

(a) Starting from the following representation for the position vector **r**,

$$\mathbf{r} = R_0 \mathbf{e}_r + 0 \mathbf{E}_z,\tag{1}$$

establish expressions for the velocity vector v and acceleration vector a of the particle.

- (b) Draw a freebody diagram of the particle in motion. Your freebody diagram should include a clear expression for the spring force.
- (c) Suppose that the particle is in motion on the track. Show that the differential equations governing the motion of the particle and the normal force acting on the particle are

$$mR_0\ddot{\theta} = -KR_0????, \qquad \mathbf{N} = (?+??)\,\mathbf{e}_r + ??\mathbf{E}_z.$$
 (2)

For full credit, supply the missing terms.

(d) Suppose that the particle is released from rest when $\theta = 0$. Show that the particle will reach A with a finite speed that is proportional to $\sqrt{\frac{K}{m}}$.

Question 2

A Particle Moving on Plane Curve (25 POINTS)

As shown in Figure 2, a particle of mass m is in motion on a rough plane curve:

$$\mathbf{r} = x\mathbf{E}_x + \frac{\alpha}{2}x^2\mathbf{E}_y,\tag{3}$$

where α is a constant. A vertical gravitational force $-mg\mathbf{E}_y$ acts on the particle. The curvature and unit normal vector to the path have the representations:

$$\kappa = \frac{|\alpha|}{\left(\sqrt{1 + \alpha^2 x^2}\right)^3}, \qquad \mathbf{e}_n = \frac{\operatorname{sgn}(\alpha)}{\sqrt{1 + \alpha^2 x^2}} \left(-\alpha x \mathbf{E}_x + \mathbf{E}_y\right). \tag{4}$$

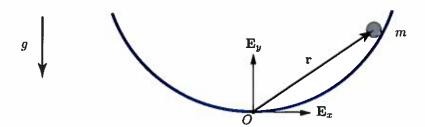


Figure 2: Schematic of a particle of mass m which is free to move on the upper side of a rough curve $y = 0.5\alpha x^2$. The case $\alpha > 0$ is shown.

(a) Suppose the particle is in motion on the curve with $\dot{x} > 0$. Starting from (3) establish expressions for the velocity \mathbf{v} and acceleration vector \mathbf{a} for the particle. Show that

$$v = \dot{x}\sqrt{1 + \alpha^2 x^2}, \qquad \mathbf{e}_t = \frac{1}{\sqrt{1 + \alpha^2 x^2}} \left(\mathbf{E}_x + \alpha x \mathbf{E}_y \right). \tag{5}$$

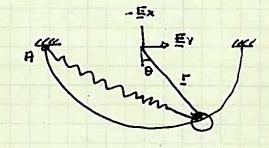
- (b) Assuming that the particle is moving on the rough curve, draw a freebody diagram of the particle. Give a clear expression for the friction force and assume that $\dot{x} > 0$.
- (c) Show that the differential equation governing the motion of the particle and the normal force acting on the particle are given by the following expressions:

$$m\sqrt{1+\alpha^2x^2}\ddot{x} = m\dot{x}^2? - mg(??) - \mu_k???$$
 $\mathbf{N} = m(g?????+?????) \mathbf{e}_n.$ (6)

For full credit supply the missing terms. In addition, establish a criterion for the particle to remain on the curve for the cases $\operatorname{sgn}(\alpha) = 1$ and $\operatorname{sgn}(\alpha) = -1$

(d) Suppose that the particle is instantaneously at rest. Show how a criterion featuring μ_s and α can be established which, if satisfied, indicates that the particle will remain at rest. Illustrate your criterion with a sketch for the case $\alpha > 0$.

QUESTION 1



(b)

$$\overline{F} = -K(||\underline{\Gamma} - \underline{\Gamma}_{R}||) \underline{\Gamma} - \underline{\Gamma}_{R} = -K(\underline{\Gamma} - \underline{\Gamma}_{R})$$

$$\cdot E_2 \qquad N_2 + (-mg) = 0$$

(d) From
$$\ddot{\theta} = -\frac{K}{m} \cos \theta$$
 we see identity and $\sin \theta = \sqrt{dV}$

to Sind
$$\frac{1}{2} \dot{\theta}_{n}^{2} - \frac{1}{2} \dot{\theta}_{0}^{2} = -\frac{K}{m} \sin \theta_{n} + \frac{K}{m} \sin \theta_{0}$$

95 particle is released from rest when
$$\theta_0 = 0$$
, $\dot{\theta}_0 = 0$, then when $\theta_{\rm p} = -\frac{\pi}{2}$

Hence
$$\frac{\partial^2}{\partial h} = \frac{2\kappa}{m}$$
 and $\frac{2\kappa}{m} = -R_0 \sqrt{\frac{2\kappa}{m}} = \frac{2\kappa}{m}$

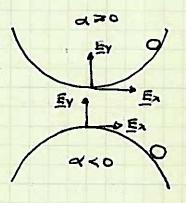
QUESTION 2

(a)
$$\Gamma = x = x + \frac{\alpha}{2} x^{2} = y$$

$$\underline{v} = x = x + \frac{\alpha}{2} x^{2} = y$$

$$\underline{a} = x = x + \frac{\alpha}{2} x^{2} = y$$

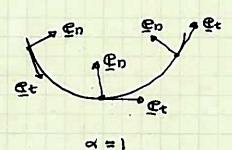
$$\underline{a} = x = x + \frac{\alpha}{2} x^{2} = y$$



the Hence
$$V = ||Y|| = \dot{X} \sqrt{1 + \dot{X}^2 \dot{X}^2}$$

$$\mathfrak{Q}t = \frac{Y}{V} = \frac{1}{\sqrt{1+a^2x^2}} \left(\mathbf{E}x + \alpha \times \mathbf{E}y \right)$$

49



$$R_{D} = \left(\frac{mg \, \text{Ey} \cdot \text{En}}{\sqrt{1 + \alpha^{2} x^{2}}} \right) + m \, \text{KN}^{2}$$

Now
$$V = X \sqrt{1+a^2x^2} + \frac{XXa^2}{\sqrt{1+x^2a^2}}$$
 [Garaphity V by dissembly V by dissembly V by dissembly V by the control of the cont

CTOPS