
Physics 7B Midterm ( I ): Solution

Problem 1

(a) 5pts

Eint =
d

2
NkBT

CV =
d

2
R

where d is the number of degrees of freedom. In this problem, d = 5.

Grading Rubric:

+3 Correct expression for Eint

(+1 Including d
2 term)

(+1 Showing Eint / T )
(+1 Including NkB)
(+0.5 Using nR, not NkB)
+2 Correct expression for CV

(+1 Including d
2 term)

(+1 Including R)

(b) 7pts

For isovolumetric process, dEint = TdS � PdV = TdS (dV = 0).

From this, we get the expression for the infinitesimal entropy change:

dS =
dEint

T
=

d
2NkBdT

T

Integrating both sides,

�S =

Z
dS =

Z Tf

Ti

d
2NkBdT

T
=

d

2
NkB

Z Tf

Ti

dT

T
=

d

2
NkB ln(T )

����
Tf

Ti

=
d

2
NkB ln

✓
Tf

Ti

◆

Again, d = 5.

Grading Rubric:

+1 Showing dEint = TdS (dV = 0)

+1 Correct Expression for dEint

+1 Integrating dS to get �S

+2 Showing �S =
R Tf

Ti

d
2NkBdT

T

+2 Correct Answer

-0.5 Using nR, not NkB

(c) 8pts

For adiabatic process, dEint = dQ� PdV = �PdV (dQ = 0).

dEint =
d
2NkBdT , and from the ideal gas law, P = NkBT

V . Then,

dEint = �PdV

d

2
NkBdT = �NkBT

V
dV

Problem 1 [(c) 8pts] continued on next page. . .



Physics 7B Midterm ( I ): Solution Problem 1

Dividing both sides by NkBT ,
d

2

dT

T
= �dV

V

Integrating both sides,
d

2

Z Tf

Ti

dT

T
= �

Z Vf

Vi

dV

V

d

2
ln

✓
Tf

Ti

◆
= �ln

✓
Vf

Vi

◆

ln

✓
Tf

Ti

◆ d
2

= ln

✓
Vf

Vi

◆�1

✓
Tf

Ti

◆ d
2

=

✓
Vi

Vf

◆

From the ideal gas law, T = PV
NkB ✓

PfVf

NkB
· NkB
PfVf

◆ d
2

=
Vi

Vf

✓
Pf

Pi

◆ d
2
✓
Vf

Vi

◆ d
2

=
Vi

Vf

✓
Pf

Pi

◆ d
2

=

✓
Vi

Vf

◆1+ d
2

Pf

Pi
=

✓
Vi

Vf

◆(1+ d
2 )·

2
d

Pf

Pi
=

✓
Vi

Vf

◆ 2
d+1

PiV
1+ 2

d
i = PfV

1+ 2
d

f

Hence, we conclude:

PiV
�
i = PfV

�
f

where � = 1 + 2
d . In this problem, d = 5, so � = 1 + 2

5 = 7
5

Grading Rubric:

+1 Explaining Q = 0 for adiabatic process

+1 Showing d
2NkBdT = �PdV

+2 Using the ideal gas law to write P in terms of T and V (or alternatively write dT in terms of dP and

dV)

+1 Separated the variables by moving all the T (or P) terms to one side and all the V terms to the other

side and then integrated

+2 Found a relation between P (or
Pf

Pi
) and V (or

Vf

Vi
), after doing the integration

(-1 Algebra mistake)

+1 Correct expression for �
(+0.5 if student either states the relation � = 1 + 2

d without derivation or just writes � =
Cp

Cv
)



Problem 2

September 28, 2016

In this problem, you can get 20 points in total. I split it up into 10 parts that
are worth 2 points each, to give you many opportunities for partial credit. You
can’t get partial credit for partial credit, unless you made a really tiny mistake,
in which case you get 1.5 instead of 2 points for that part. An answer that
doesn’t have the right units is not such a tiny mistake!
Since it’s mentioned explicitly in the problem text, you only get credit if
your answer is written in terms of the variables given in the problem,
and if you include an explanation for your answer.

(a) The p− V diagram can be seen in figure 1. Note that it contains arrows,

which are very important. For this diagram, you can get 2 points .

Figure 1: The physical setup of the problem

VA 3VA

P

V

A

B

C

(b) We get the following works, each is worth 2 points :

WAB =

∫
p dV = nrTA

3VA∫
VA

dV

V
= nRTA ln 3 = PAVA ln 3,

WBC = 0, because the volume is constant,

WCA = −∆Eint = −3

2
nR∆T = −3

2
nR (TA − TC) = −3

2
nR

(
TA − TA

(
VA
3VA

)γ−1
)

=

=
3

2
nRTA

(
3−2/3 − 1

)
=

3

2
PAVA

(
3−2/3 − 1

)
,

where we used that TV γ−1 = const. for the adiabatic process.
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(c) We get the following heats, each is worth 2 points :

QAB = WAB = PAVA ln 3,

QBC = ncV ∆T = nR
3

2
(TC − TB) = nR

3

2
TA

(
3−2/3 − 1

)
=

3

2
PAVA

(
3−2/3 − 1

)
QCA = 0.

(d) We get the following entropy changes, each is worth 2 points :

∆SAB =

∫
dQ

T
=

1

TA

∫
dQ =

QAB

TA
=

PAVA
TA

ln 3,

∆SBC =

∫
dQ

T
=

TC∫
TB

ncV dT

T
=

3

2
nR ln

(
TC
TB

)
=

3

2
nR ln

(
3−2/3

)
= −nR ln 3 =

= −PAVA
TA

ln 3

∆SCA = 0.

This makes sense, since entropy is a state function, so ∆Stotal = ∆SAB +
∆SBC + ∆SCA = 0.
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Problem 3. A Carnot Cycle

(3a) [5 points]

This cycle consists of isothermal and adiabatic paths. On the isothermal paths pressure relates to volume
as P ∼ V −1, and on the adiabatic paths P ∼ V −γ where γ is the adiabatic index of the gas. Since γ > 1,
the adiabatic curves in the (P, V ) plane rise and fall more steeply than the isothermal ones.

There are four legs to consider:

• A→ B is isothermal expansion, so V increases and P decreases slightly as P ∼ V −1

• B → C is adiabatic expansion, so V increases further and P decreases significantly as P ∼ V −γ

• C → D is isothermal compression, so V now decreases and P increases slightly as P ∼ V −1

• D → A is adiabatic compression, so V again decreases back to the original volume and P increases
significantly as P ∼ V −γ to the original pressure.

This gives the cycle below in the (P, V ) plane.

(3b) [15 points]

The efficiency is defined as the net work done by the gas per unit input heat, so we need to calculate both
the net work done W and the input heat QH . There are multiple way to do this, and I’ll show several below.

The most direct way to compute the net work is to integrate dW = P dV over the entire cycle. In doing
this we must account carefully for each leg of the cycle, as nonzero work is done during all four legs. Slightly
simpler is to recall that due to the First Law (Energy Conservation) the net work done is equal to the net
heat absorbed QH − QL, so we can calculate W indirectly by finding the input heat QH and output heat
QL:

e =
W

QH
=
QH −QL

QH
= 1− QL

QH
(1)

This is a bit simpler – since we know that no heat is exchanged during the adiabatic legs BC and DA, we
can focus only on the isothermal legs AB and CD.

1



We now need the input heat QH absorbed over AB and the output head QL exhausted during CD. Again
there are several ways to compute these. A slick way is to use a trick: we know that the change in entropy of
the gas is related to its heat absorbed via ds = dq /T , but also that for a closed cycle the change in entropy
(zero as entropy is a state function). This gives a relation between the exchanged heats and temperatures
over the cycle:

0 = ∆S =

∫
ABCD

1

T
dq

=

∫
AB

1

T
dq +

∫
CD

1

T
dq

=
1

TH

∫
AB

dq +
1

TL

∫
CD

dq

=
QH
TH
− QL
TL

⇒ QL
QH

=
TL
TH

Here, in going to the second line we use the fact that the adiabatic paths BC and DA have no entropy change,
and in the third line we are able to bring the temperatures out of the integral as they are constant over those
paths. Also, note the critical negative sign: we’ve defined QL as the magnitude of head exhausted, so the
heat absorbed by the gas over CD is −QL. Plugging this ratio into Equation 1 give the desired result:

e = 1− TL
TH

If you did not think to use this trick, it is still straightforward to compute QH and QL directly. By the First
Law (Energy Conservation) the heat exchanged over the isothermal legs AB and CD is equal to the work
done over those legs, and so we can compute the heat by integrating dW = P dV :

QH = WH =

∫ VB

VA

P dV = NkTH

∫ VB

VA

1

V
dV = NkTH ln

(
VB
VA

)
where N is the number of molecules in the gas, k is Boltzmann’s constant, and we were able to bring TH
out of the integral since temperature is constant along AB. Similarly for QL:

−QL = WL =

∫ VD

VC

P dV = NkTL

∫ VD

VC

1

V
dV = NkTL ln

(
VD
VC

)
⇒ QL = NkTL ln

(
VC
VD

)
> 0

Again we must be careful with signs: we’ve defined QL to be the magnitude of the output heat but the
above integral computes the heat absorbed, so we must include an explicit minus sign on the left-hand side
above. We now have, using Equation 1:

e = 1− TL ln (VC/VD)

TH ln (VB/VA)

The various volumes VA, VB , VC , VD are not independent. We can chose the values of VA < VB < VC as we
wish, but once these are chosen, the value of VD is uniquely determined as the point that connects both to
VA via an adiabat and to VC via an isotherm. So we can simplify e above by writing VD in terms of the
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other three volumes. The volumes are related by the four paths:

PAVA = PBVB [A→ B isothermal]

PBV
γ
B = PCV

γ
C [B → C adiabatic]

PCVC = PDVD [C → D isothermal]

PDV
γ
D = PAV

γ
A [D → A adiabatic]

and we now solve these equations for VD in terms of VA, VB , VC . There are many paths through this
arithmetic. A relatively clean one is to replace the pressures with temperatures using the ideal gas law, and
then make use of the fact that TA = TB and TC = TD to simplify. But I will take the most direct route.
From the bottom two equations eliminate PD:

PCVC = V 1−γ
D PAV

γ
A

Now use the second equation to eliminate PC from this expression:

PBV
γ
BV

1−γ
C = V 1−γ

D PAV
γ
A

⇒ V 1−γ
D =

PBV
γ
BV

1−γ
C

PAV
γ
A

And now we can eliminate the ratio of pressures in this expression using the first equation:

V 1−γ
D =

V 1−γ
A V 1−γ

C

V 1−γ
B

⇒ VC
VD

=
VB
VA

We’ve found that in order for the Carnot cycle to form a closed loop, the volume compression ratio over
each isothermal path must be equal. And so the ratio of logs appearing in our expression for the efficiency
is just 1:

ln (VC/VD)

ln (VB/VA)
= 1

and we find the efficiency of this engine to be:

e = 1− TL
TH
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Rubric

3a [5 pts]

These criteria were judged independently and their points summed (a perfect answer satisfies all three).

2 pts: Correct ordering and relative locations of ABCD

2 pts: Correct shapes of paths connecting ABCD

1 pts: Drawing a closed, four-vertex figure in PV plane

3b [15 pts]

Since there are many possible routes to the correct efficiency (and many more possible missteps), this was
judged on the soundness of your approach rather than specific features. Each answer was placed into one of
the following categories with the corresponding score:

15 pts: Fully valid derivation.

12 pts: Valid derivation, but left unsimplified and does show explicit dependence of efficiency on only
the temperature ratio.

8 pts: Fundamental approach was sound, but derivation invalid due to logical gaps or significant
conceptual errors in calculations.

4 pts: An attempt to derive efficiency from first principles was made, but the approach was fundamen-
tally unsound or too vague to be understood.

0 pts: No attempt at a derivation (including simply quoting the correct efficiency from memory).

Additionally, an extra −2 points was assessed whenever one of the first three categories would have been
met except for arithmetic errors.
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4.

(a)

After a molecule collides with the wall, it must travel the length of the cylinder and then travel back before
again colliding with the same wall, for a total distance of 2L. The molecule’s speed (magnitude of velocity)
is vx, and time to travel a distance equals distance divided by speed.

∆t =
∆x

v
=

2L

vx

(b)

During each collision, the change in the molecule’s momentum is twice the initial momentum itself – because
the collision not only stops the molecule’s forward progress but also sends it traveling back with the same
speed. Since F = dp

dt , the average force the wall must exert equals the momentum transfer in each collision
per time interval between collisions. Finally, the total force from N molecules equals N times the average
force of one molecule.

∆p = mvx − (−mvx) = 2mvx

Faverage; one molecule =
∆p

∆t
=

(2mvx)(
2L
vx

) =
mv2x
L

F =
Nmv2x

L

(c)

We can use the given equation to express our force formula in terms of temperature.

T =
mv2

kB
=⇒ kBT = mv2x

F =
N (kBT )

L

FL = NkBT

(The result resembles the usual three-dimensional ideal gas law, but with force and length serving as the
one-dimensional analogues of pressure and volume, respectively.)

Scoring

6 points for part (a)
7 points for part (b)
7 points for part (c)
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Birgenau Midterm 1 2016 Problem 5 Solution

James Reed Watson

September 29, 2016

1 Solution

(a) Q = mc∆T . Because the solid (a) line rises in temperature faster as a
function of heat, then the dotted line (b) has a higher specific heat.

(b) The latent heat across a phase change is given by mL = Q, where m
is the mass of the object and Q is the heat applied. Our mass is 1 kg,
so we just subtract the starting and ending energies on the graph.

Lf = 165
J

Kg
− 60

J

Kg
= 105

J

Kg
(1)

Lv = 620
J

Kg
− 270

J

Kg
= 350

J

Kg
(2)

(c) A and C are in mixed phases. A is the solid-liquid region. C is the
liquid gas region. A could take a less time than C because Lf < Lv for
all substances.

(d) This is a calorimetry problem. The system is thermally isolated, so
the heat lost by the water and container is gained by the mercury. The
mercury gains heat while it melts, and later as it reaches the equilibrium

1



temperature of 30◦C. The equation to use is

mmcm(Tf − T0) +mmLf +malcal(Tf − Tw) + cwmw(Tf − Tw) (3)

Lf = −cm(Tf − T0)−
mal

mm

cal(Tf − Tw)−
mw

mm

cw(Tf − Tw) (4)

= −1400
J

kgK
(70K)− 2(900

J

kg
K)(−20K)− 1400

J

kg
K(−20K) (5)

= −98000
J

kg
+ 84000

J

kg
+ 36000

J

kg
(6)

= 22, 000
J

kg
(7)

2 Rubric

My grading is negative, and if their answer is correct I don’t plan on deducting
points.

1. a) Answer incorrect (5.0)

2. b) Lf correct (2.0)

3. b) Lv correct (2.0)

4. b) Units correct (1.0)

5. c) Identified regions A and C. (1.0)

6. c) Identified A as solid liquid and C as liquid gas. (2.0)

7. c) Identified C as taking longer (1.0)

8. c) Identified the correct reason for C taking longer.(1.0)

9. d) Correct answer (2.5)

10. d) Wrote down ∆Qtotal = 0. (1.0)

11. d) Wrote down expression for L. (1.0)

12. d) Units correct (.5)

Total: 20 points, 5 points per problem.
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