MATH 185-4 MIDTERM 1 SOLUTION

1. (5 points) Determine whether the following statements are true of false, no justification is required.
(1) (1 point) The principal branch of logarithm function $f(z)=\log z$ is continuous on $\mathbb{C} \backslash\{0\}$.

False. Recall that $\operatorname{Arg}(z) \in(-\pi, \pi]$. So $\log (-1)=\pi i$, and for $z_{n}=$ $e^{i\left(\frac{1}{n}-1\right) \pi}$, we have $\lim z_{n}=e^{-i \pi}=-1$ and $\lim f\left(z_{n}\right)=\lim i\left(\frac{1}{n}-1\right) \pi=-\pi i \neq$ $f(-1)$.
(2) (1 point) Let $\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex numbers in a bounded set $U \subset \mathbb{C}$, then $\left\{z_{n}\right\}_{n=1}^{\infty}$ always has a subsequence converging to a point $z_{0} \in U$.

False. The theorem need the condition that U is closed. For example, for $U=\{z \in \mathbb{C}| | z \mid<1\}$ and $z_{n}=1-\frac{1}{n} \in U, \lim z_{n}=1 \notin U$.
(3) (1 point) If $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ are both analytic functions, then $f \circ g: \mathbb{C} \rightarrow \mathbb{C}$ is also analytic.

True. This is a theorem on the book, and the chain rule gives $(f \circ g)^{\prime}(z)=$ $f^{\prime}(g(z)) \cdot g^{\prime}(z)$.
(4) (1 point) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function. If $f^{\prime}\left(z_{0}\right) \neq 0$, then there exists a small open disc B containing z_{0} such that f is one-to-one on B.

True. This is part of the inverse function theorem.
(5) (1 point) Let D be an open set in \mathbb{C}, any harmonic function $u: D \rightarrow \mathbb{R}$ has a harmonic conjugation.

False. For $D=\mathbb{C} \backslash\{0\}$, and $u(z)=\log |z|$, the harmonic conjugation does not exist on D. It only exists, for example, on $\mathbb{C} \backslash(-\infty, 0]$, and a harmonic conjugation is $v(z)=\operatorname{Arg} z$.
2. (6 points) Please give the definitions of the following concepts.
(1) (2 points) $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable at $z_{0} \in \mathbb{C}$.

The limit

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}
$$

exists.
(2) (2 points) $f: \mathbb{C} \rightarrow \mathbb{C}$ is an analytic function.

For any $z \in \mathbb{C}$, the complex derivative $f^{\prime}(z)$ exists, and the function f^{\prime} : $\mathbb{C} \rightarrow \mathbb{C}$ is continuous.
(3) (2 points) The Cauchy-Riemann equations for $f(x+i y)=u(x, y)+$ $i v(x, y)$.

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

3. (6 points) Please do the following computations.
(1) (2 points) Please compute

$$
\begin{gathered}
\frac{5+5 i}{3+4 i}=? \\
\frac{5+5 i}{3+4 i}=\frac{(5+5 i)(3-4 i)}{(3+4 i)(3-4 i)}=\frac{15+20+15 i-20 i}{25}=\frac{7-i}{5} .
\end{gathered}
$$

(2) (2 points) Please find all complex numbers $z \in \mathbb{C}$ such that

$$
(z-1)^{4}=8 \sqrt{2}+8 \sqrt{2} i
$$

Since $8 \sqrt{2}+8 \sqrt{2} i=16\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right)=2^{4} e^{i \frac{\pi}{4}}$, all complex numbers w such that $w^{4}=8 \sqrt{2}+8 \sqrt{2} i$ are $2 e^{i \frac{1}{16} \pi}, 2 e^{i \frac{9}{16} \pi}, 2 e^{i \frac{17}{16} \pi}$ and $2 e^{i \frac{25}{16} \pi}$.

So all the desired complex numbers z are $2 e^{i \frac{1}{16} \pi}+1,2 e^{i \frac{9}{16} \pi}+1,2 e^{i \frac{17}{16} \pi}+1$ and $2 e^{i \frac{25}{16} \pi}+1$.
(3) (2 points) Please find all complex numbers $z \in \mathbb{C}$ such that

$$
e^{z+\frac{\pi}{6} i}=1+\sqrt{3} i .
$$

Since $1+\sqrt{3} i=2\left(\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)=2 e^{i \frac{\pi}{3}}, e^{z+\frac{\pi}{6} i}=1+\sqrt{3} i=2 e^{i \frac{\pi}{3}}$ if and only if $e^{z}=2 e^{i \frac{\pi}{6}}$.

So all the possible z are $\log 2+\frac{\pi}{6} i+2 k \pi i$, with $k \in \mathbb{Z}$.
4. (8 points) Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function, and suppose that $f(x+i y)=$ $u(x, y)+i v(x, y)$. If all second-order partial derivatives of u and v are continuous, please show that the complex derivative $f^{\prime}: \mathbb{C} \rightarrow \mathbb{C}$ is also analytic.

Since f is analytic, the Cauchy-Riemann equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

hold on \mathbb{C}. Moreover, we also have

$$
f^{\prime}(x+i y)=\frac{\partial u}{\partial x}(x, y)+i \frac{\partial v}{\partial x}(x, y) .
$$

To check that f^{\prime} is analytic, we need to check the expression of f^{\prime} above satisfies the Cauchy-Riemann equations.

For the first equation, we check it by

$$
\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial y}\right)=\frac{\partial}{\partial y}\left(\frac{\partial v}{\partial x}\right) .
$$

Here the second equality uses the fact that all second-order partial derivatives of v are continuous.

Similarly, for the second equation, we also check it by

$$
\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=-\frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}\right) .
$$

So the Cauchy-Riemann equations hold for f^{\prime}, this implies that $f^{\prime \prime}(z)$ exists for any $z \in \mathbb{C}$ and

$$
f^{\prime \prime}(x+i y)=\frac{\partial^{2} u}{\partial x^{2}}(x, y)+i \frac{\partial^{2} v}{\partial x^{2}}(x, y)
$$

Moreover, since all second-order partial derivatives of u and v are continuous, $f^{\prime \prime}$ is continuous. So we have showed that $f^{\prime}: \mathbb{C} \rightarrow \mathbb{C}$ is analytic.
5. (8 points) Let $u: \mathbb{C} \rightarrow \mathbb{R}$ be a harmonic function, and let $v: \mathbb{C} \rightarrow \mathbb{R}$ be its harmonic conjugation.
(1) (3 points) Let $p: \mathbb{C} \rightarrow \mathbb{R}$ be a function defined by $p(x, y)=u(-y, x)+v(x, y)$, please show that p is a harmonic function.

Since u is harmonic, and v is the harmonic conjugation of u, both u and v are harmonic functions. So

$$
u_{x x}+u_{y y}=v_{x x}+v_{y y}=0
$$

hold on \mathbb{C}.
Now we do computations for p.
$p_{x}(x, y)=u_{y}(-y, x)+v_{x}(x, y)$, and $p_{x x}(x, y)=u_{y y}(-y, x)+v_{x x}(x, y)$.
Similarly,
$p_{y}(x, y)=-u_{x}(-y, x)+v_{y}(x, y)$, and $p_{y y}(x, y)=u_{x x}(-y, x)+v_{y y}(x, y)$.
So
$p_{x x}(x, y)+p_{y y}(x, y)=\left(u_{x x}(-y, x)+u_{y y}(-y, x)\right)+\left(v_{x x}(x, y)+u_{y y}(x, y)\right)=0$.
Moreover, since all first-order and second-order partial derivatives of p are linear combinations of first-order and second-order partial derivatives of u and v, they are all continuous. So p is a harmonic function on \mathbb{C}.
(2) (5 points) Please find a harmonic conjugation $q: \mathbb{C} \rightarrow \mathbb{R}$ of p.

Since v is the harmonic conjugation of $u, f(x+i y)=u(x, y)+i v(x, y)$ is an analytic function. We need to find a function q such that $p(x, y)+i q(x, y)$ is also analytic.

For $g: \mathbb{C} \rightarrow \mathbb{C}$ defined by $g(z)=f(i z)-i f(z), g$ is apparently an analytic function. We also have

$$
\begin{aligned}
& g(x+i y)=f(-y+i x)-i f(x+i y)=(u(-y, x)+i v(-y, x))-i(u(x, y)+i v(x, y)) \\
= & (u(-y, x)+v(x, y))+i(v(-y, x)-u(x, y)) .
\end{aligned}
$$

Since g is analytic and p is the real part of g, the imaginary part $q(x, y)=$ $v(-y, x)-u(x, y)$ is the harmonic conjugation of p.

6. (7 points)

(1) (4 points) Please find the fractional linear transformation that maps 0 to $2 i$, 1 to $0,\{z \in \mathbb{C}| | z \mid=1\}$ to $\{x+i y \in \mathbb{C} \mid x=y\}$, and $\{x+i y \in \mathbb{C} \mid y=0\}$ to $\{z \in \mathbb{C}||z-(1+i)|=\sqrt{2}\}$.

Let f be the desired fractional linear transformation.
The intersection between $\{z \in \mathbb{C}||z|=1\}$ and $\{x+i y \in \mathbb{C} \mid y=0\}$ is $\{1,-1\}$, and the intersection between $\{x+i y \in \mathbb{C} \mid x=y\}$ and $\{z \in$ $\mathbb{C}||z-(1+i)|=\sqrt{2}\}$ is $\{0,2+2 i\}$. So f maps $\{1,-1\}$ to $\{0,2+2 i\}$. Since we already know that f maps 1 to 0 , it maps -1 to $2+2 i$.

Since $f(1)=0$, we have

$$
f(z)=\frac{a(z-1)}{c z+d} .
$$

Since $f(0)=2 i$, we further get

$$
f(z)=\frac{2 i(z-1)}{c z-1} .
$$

Since we also have $f(-1)=2+2 i$, we have $\frac{-4 i}{-c-1}=2+2 i$. So $c=\frac{4 i}{2+2 i}-1=$ $(1+i)-1=i$, and the desired fractional linear transformation is

$$
f(z)=\frac{2 i(z-1)}{i z-1}=\frac{2 z-2}{z+i} .
$$

(2) (3 points) Please also find the image of the line $\{x+i y \mid x=0\}$ under this fractional linear transformation.

We know that $f(0)=2 i$, it is also easy to see that $f(\infty)=2$ and $f(i)=1+i$.
Since fractional linear transformations map lines and circles to lines and circles, and $\{x+i y \in \mathbb{C} \mid x=0\}$ is a line, its image under f is a line or a circle.

Since $0, \infty, i$ all lie on $\{x+i y \in \mathbb{C} \mid x=0\}$, the image of this line is a line or circle going through $2 i, 2,1+i$. It is easy to see that these three points lie in the line $\{x+i y \in \mathbb{C} \mid x+y=2\}$, so it is the image of $\{x+i y \in \mathbb{C} \mid x=0\}$ under f.

