EECS $70 \quad$ Discrete Mathematics and Probability Theory Fall 2015 Jean Walrand

Print Your Name: \qquad ,
(last)
(first)
SIGN Your Name: \qquad

Print Your Student ID: \qquad
CIRCLE your exam room: 2040 VLSB 2060 VLSB 145 Dwinelle 155 Dwinelle 10 Evans OTHER Name of the person sitting to your left: \qquad

Name of the person sitting to your right: \qquad

- After the exam starts, please write your student ID (or name) on every odd page (we will remove the staple when scanning your exam).
- We will not grade anything outside of the space provided for a problem. Please use scratch paper as necessary and clearly indicate your answer.
- For questions 1(a)-(e). You need only circle True or False.
- For questions 2 (a)-(g), only provide the requested answer (e.g., probability value, one or more events). There is no need to justify your answer.
- For questions 3 (a)-(d), write clearly your answer in the space provided. There is no need to justify your answer.
- For questions 4 (a)-(h), you should indicate clearly your derivation in the space provided.
- You may not look at books, notes, etc. Calculators, phones, and computers are not permitted.
- There are 9 pages on the exam, including this first page. Notify a proctor immediately if a page is missing.
- You may, without proof, use theorems and facts that were proven in the notes and/or in lecture.
- You have 105 minutes; there are 24 parts on this exam.

Do not turn this page until your instructor tells you to do so.

1. True or False. No justification needed. 15 points. 3/3/3/3/3.

Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!
(a) Disjoint events with a positive probability cannot be independent. (True or False.)
(b) We can find events A and B with $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$ and $\operatorname{Pr}[B \mid A]<\operatorname{Pr}[B]$. (True or False.)
(c) If $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B]$, then A and B are independent. (True or False.)
(d) For a random variable X, it is always the case that $E\left[X^{2}-X\right] \geq-1$. (True or False)
(e) If $\operatorname{Pr}[A]>\operatorname{Pr}[\bar{A}]$, then $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[\bar{A} \mid B]$. (True or False)

2. Short Answer: Probability Space. 31 points: 4/4/4/5/5/4/5

Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!
(a) You flip a biased coin (such that $\operatorname{Pr}[H]=p$) until you accumulate two $H \mathrm{~s}$ (not necessarily consecutive). What is the probability space? That is, what is Ω and what is $\operatorname{Pr}[\omega]$ for each $\omega \in \Omega$?
(b) Let $\Omega=\{1,2,3,4\}$ be a uniform probability space. Let also $A=\{1,2,3\}$. Produce an event B such that $\operatorname{Pr}[B]>0$ and A and B are independent.
(c) Let $\Omega=\{1,2,3,4\}$ be a uniform probability space. Produce three events A, B, C that are pairwise independent but not mutually independent.
(d) You are dealt two cards from a deck of 52 cards. What is the probability that the value of the first card is strictly larger than that of the second? [In this question, the values are 1 for an ace, 2 through 10 for the number cards, then 11 for a Jack, 12 for a queen, 13 for a king.]
(e) You roll a balanced 6-sided die twice. What is the probability that the total number of pips is less than 10 given that it is larger than 7 ?
(f) With probability $1 / 2$, one rolls a die with four equally likely outcomes $\{1,2,3,4\}$ and with probability $1 / 2$ one rolls a balanced die with six equally likely outcomes $\{1,2, \ldots, 6\}$. Given that the outcome is 4 , what is the likelihood that the coin was four-sided?
(g) A coin is equally likely to be fair or such that $\operatorname{Pr}[H]=0.6$. You flip the coin 10 times and get 10 heads. What is the probability that the next coin flip yields heads?
3. Short Answers: Random Variables and Expectation. 14 points. 3/3/4/4

Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!
(a) Define a 'random variable' in a short sentence.
(b) Let $\Omega=\{1,2\}$ be a uniform probability space. Produce a random variable that has mean zero and variance 1 .
(c) Let $\Omega=\{1,2,3,4\}$ be a uniform probability space. Define two random variables X and Y such that $E[X Y]=E[X] E[Y]$ even though the random variables are not independent.
(d) You roll a die twice. Let X be the maximum of the number of pips of the two rolls. What is $E[X]$. (You may leave the answer as a sum.)
4. Short Problems. 40 points: 5/5/5/5/5/5/5/5

Clearly indicate your answer and your derivation.
(a) Let X be a random variable with mean 1 . Show that $E\left[2+3 X+3 X^{2}\right] \geq 8$.
(b) Let X be geometrically distributed with parameter p. Recall that this means that $\operatorname{Pr}[X=n]=(1-$ $p)^{n-1} p$ for $n \geq 1$. Find $E[X \mid X>n]$. Do not leave the answer as an infinite sum.
(c) Roll a die n times. Let X_{n} be the average number of pips per roll. What is $\operatorname{var}\left[X_{n}\right]$? You may leave the answer as a sum.
(d) Let X and Y be independent with $X=G(p)$ and $Y=G(q)$. What is $\operatorname{Pr}[X \leq Y]$? Do not leave the answer as an infinite sum.
(e) You roll a balanced die five times. Let X be the total number of pips you got and Y the total number of pips on the last two rolls. What is $E[X \mid Y=4]$? What is $E[Y \mid X=15]$?
(f) How many times do you have to flip a fair coin, on average, until you get two consecutive H 's? [Hint: condition on the outcome of the last flip.]
(g) Let $\left\{X_{n}, n \geq 1\right\}$ be independent and geometrically distributed with parameter p. Recall that $\operatorname{var}[X]=$ $(1-p) / p^{2}$. Provide an upper bound on

$$
\operatorname{Pr}\left[\left|\frac{X_{1}+\cdots+X_{n}}{n}-p\right| \geq a\right]
$$

using Chebyshev's inequality.
(h) There are two envelopes. One contains checks with $\{1,3,5,6,7\}$ dollars. The other contains checks with $\{4,5,5,7\}$ dollars. You choose one of the two envelopes at random and pick one of the checks at random in the envelope. That check happens to be for 5 dollars. You are given the option to keep all the money in that envelope, including the check for 5 dollars, or to switch to the other envelope. What should you do?

