
Popa & Wagner
Spring 2016

CS 161
Computer Security Midterm 1

Problem 1 True or False, and Fill-me-in (12 points)
In parts (a) and (b), circle True or False. In parts (c), fill in the blank. Do not justify
your answer.

(a) True or False : A problem with iframes is that if a user visits an attacker’s
website, that website could load a bank website inside <iframe> tags and read
sensitive data from this website.

Solution: Explanation: The same-origin policy prevents this.

(b) True or False : A site that implements and requires a hidden validation token in
a form value for requests, in addition to authentication cookies, but is vulnerable
to XSS attacks, is safe from CSRF attacks.

Solution: Explanation: You can use a XSS attack to learn the CSRF token
and then mount a CSRF attack. See also the solution to problem 3(b).

(c) Consider the following setup: an operating system has access to sensitive files,
a sandbox runs on top of the operating system, and a potentially-compromised
application runs inside the sandbox. The sandbox does not allow the application
to access any local files.

In preventing an attacker from gaining access to the sensitive files, the minimum
trusted code base is the sandbox and operating system.

Solution: Explanation: The sandbox has to be trusted, since it is responsible
for restricting the execution of the application. The operating system also has
to be trusted, since the filesystem code is part of the OS and any bugs in the
filesystem could allow a malicious application to access sensitive files.

(d) An attacker tries to mount an XSS attack on a forum application. He inserts the
string below into a comments form and clicks submit.

Type%your%comment%here:

<script>%document.write(“You%were%attacked!”);%</script>

compromised%
application

sandbox

operating%system

sensitive%files

SUBMIT

The web server correctly escapes all inputs it receives using HTML escaping, then

Page 1 of 7

it stores them in a database. Alice comes to this forum and visits a page where she
can see every comment including this one.

Write down the exact string Alice will see in her browser when she views the at-
tacker’s comment.

Solution: <script> document.write("You were attacked!");</script>

Explanation: After escaping, this will saved in the database and included in the
HTML response as

<script> document.write("You were attacked!");</script>

When the browser displays that on the screen, it will turn the < into <, etc.,
without executing it.

Problem 2 Multiple choice (12 points)

(a) When you pay for something online using PayPal, the PayPal checkout form that
shows the price and asks for your PayPal login always appears on its own page,
never embedded in an iframe on the seller’s checkout page. What threat is this
defending against? Circle the best answer.

XSS Integer overflow

CSRF SQL injection

Clickjacking Same-origin policy

Buffer overruns Drive-by malware

None of the above

(b) NinjaCourses.com is written in Python. Sheryl decides to rewrite it in C, ensuring
her re-implementation behaves the same. Assuming Sheryl tries to make her C
implementation have the same functionality as the Python implementation, what
new security threats might Sheryl’s C code face that aren’t equally applicable to
the original Python code? Circle all that apply.

XSS CSRF

Clickjacking Buffer overruns

Phishing SQL injection

Separation of responsibility Two-factor authentication

None of the above

(c) After finishing her C code, Sheryl does CS 161’s project 1 and learns for the first
time about the ret2esp technique. Which of the following provides a complete
defense against ret2esp attacks? Circle all that apply.

Midterm 1 Page 2 of 7 CS 161 – Sp 16

Non-executable Stack Referer validation

Content Security Policy (CSP) Same-origin policy

Memory-safe programming languages Least privilege

Prepared statements Two-factor authentication

None of the above

Solution: Explanation: A non-executable stack prevents ret2esp, since ret2esp
involves executing a jmp *esp instruction, which involves jumping into the
stack. If the stack is non-executable, jumping there will fail (cause a segmenta-
tion fault). Memory-safe programming languages also prevent it, because they
prevent overflowing buffers in the first place and thus there’s no way to overwrite
the return address to point to a jmp *esp instruction.

Problem 3 Web security (15 points)
Patsy-Bank learned about the CSRF flaw on their site described in discussion section,
and they hired a security consultant who helped them fix it by adding a random CSRF
token to the sensitive /transfer request. A valid request now looks like:

https://patsy-bank.com/transfer?to=bob&amount=10&token=<random>

The CSRF token is chosen randomly, separately for each user.

Not one to give up easily, Mallory starts looking at the welcome page. She loads the
following URL in her browser:

https://patsy-bank.com/welcome?name=<script>alert("Jackpot!");</script>

When this page loaded, Mallory saw an alert pop up that says “Jackpot!”. She smiles,
knowing she can now force other bank customers to send her money.

(a) What kind of attack is the welcome page vulnerable to? Provide the name of the
category of attack.

Solution: Reflected XSS

(b) Mallory plans to use this vulnerability to bypass the CSRF token defense. She’ll
replace the alert("Jackpot!"); with some carefully chosen JavaScript. What
should her JavaScript do? (Describe using at most 1–2 sentences.)

Solution: Load a payment form, extract the CSRF token, and then submit a
transfer request with that CSRF token.

Or: Load a payment form, extract the CSRF token, and send it to Mallory.

Midterm 1 Page 3 of 7 CS 161 – Sp 16

(c) If Patsy-Bank added frame-busting code to the welcome page, would that stop this
attack? Circle yes or no.

Yes No

(d) Mallory wants to attack Bob, a customer of Patsy-Bank. Name one way that
Mallory could try to get Bob to click on a link she constructed.

Solution: Send him an email with this link (making it look like a link to some-
where interesting). Post the link on a forum he visits. Set up a website that
Bob will visit, and have the website open that link in an iframe. Send Bob a
text message or a message in Facebook with the link.

(There were many possible answers. You only needed to list one.)

Problem 4 Evaluating defenses (16 points)
Michael is considering several ideas for defending against some of the threats we’ve seen in
this class. For each of the following scenarios, decide whether Michael’s proposed defense
is secure or not (i.e., whether it is effective at defending against the named threat). Circle
“Secure” or “Insecure”; if you circle “Insecure”, also describe in a sentence or less how
an attacker could defeat Michael’s defense.

(a) Michael notices that a bank is vulnerable to CSRF attacks. To defend against
CSRF, Michael proposes that the bank add a X-Frame-Options header to every
page.

Secure Insecure

Solution: Attack: It does nothing to stop it.

(b) To prevent buffer overruns, Michael proposes to allocate all buffers on the heap. In
other words, even if a buffer is declared as a local variable, Michael proposes that
the compiler should insert a call to malloc() to allocate space for the buffer, and
free the buffer when the function returns.

Secure Insecure

Solution: Attack: Overwrite stuff in the heap to overwrite a function pointer.
(Many other attacks are possible as well.)

(c) To prevent phishers from using homeographic attacks using internationalized char-
acters (e.g., paypal.com, where the first p is in Cyrillic), Michael proposes that
browsers should allow only the characters A-Za-z0-9_-. to appear in the domain
name of a URL; if the domain name contains any other characters, the browser
should refuse to load the URL.

Midterm 1 Page 4 of 7 CS 161 – Sp 16

Secure Insecure

Solution: We also accept Insecure with the attack: use a domain name that
exploits the similarities between vv/w or l/i/1 or O/0.

(d) To prevent session fixation attacks, Michael proposes to use 256-bit session IDs,
where the first 128 bits are chosen randomly for each session, and the last 128 bits
are a secret value that is specific to the server but the same for all sessions with
that server.

(As a reminder, session fixation attacks apply to sites that accept a session ID in
the URL and set a session cookie with the same value.)

Secure Insecure

Solution: Attack: Mallory can still take her own session ID, put it in a URL,
and get Victoria the victim to fetch that URL.

Problem 5 Reasoning about memory safety (20 points)
Consider the following C code.

/* Requires: ??? */

void shuffle(int a[], int b[], size_t m, size_t n) {

for (size_t i = 0; i < m; i++) {

int tmp = a[i];

a[i] = b[n-i];

b[n-i] = tmp;

}

}

For each of the following candidate preconditions in parts (a)–(d), answer whether that
precondition is sufficient to ensure that shuffle() will be memory-safe. If it is not
sufficient, also specify an example of an input that would satisfy the precondition but
could cause memory-unsafe behavior.

(a) a != NULL && b != NULL

Sufficient Not sufficient

Solution: a = {0}, b = {0}, m = 2, n = 1

(b) a != NULL && b != NULL && m == 0 && n == 0

Sufficient Not sufficient

(c) a != NULL && b != NULL && m == n

Midterm 1 Page 5 of 7 CS 161 – Sp 16

Sufficient Not sufficient

Solution: a = {0}, b = {0}, m = 2, n = 2

(d) a != NULL && b != NULL && m < size(a) && n < size(b)

Sufficient Not sufficient

Solution: a = {0,1,2}, b = {0}, m = 2, n = 0

(e) Suggest a better precondition. Your precondition should be sufficient to ensure that
shuffle() is memory-safe, and be as general as possible. Don’t worry about what
shuffle() is trying to accomplish; it just needs to be memory-safe.

Solution: a != NULL && b != NULL && m <= size(a) && n < size(b) &&

m <= n+1

Problem 6 Secure design and implementation (14 points)

(a) Blackbeard decides to set up his own course scheduling site, PirateCourses.com. To
manage this machine remotely, he installs a SSH server on it. He discovers that
the version of SSH he is running is vulnerable to a buffer overflow exploit, but he’s
too lazy to upgrade. Instead, he configures the SSH daemon to run on a custom
port, 5467. However, when he logs in a week later, he finds all his data gone. What
security principle did he ignore?

Solution: Don’t rely on security through obscurity.

(b) Blackbeard fixes this, and his website is now flourishing. He hires Alice to implement
tagging, so users can add tags to courses and search for courses by tag. For instance,
when a user searches for the tag easy_exams, the following page is loaded:

http://www.piratecourses.com/?query=easy_exams

That page contains a list of all courses with the easy_exams tag.

Unfortunately, Alice doesn’t know how to write secure code. Crabby the crab
searches for the tag courses that are easy to’; drop table users -- and sud-
denly none of the PirateCourses users can log in any more. What kind of vulnera-
bility was this?

Solution: SQL injection

Midterm 1 Page 6 of 7 CS 161 – Sp 16

(c) Name two different reasonable techniques that Alice could have used that each
would have prevented the vulnerability in part (b).

Solution: Prepared statements. Escaping. Input validation (whitelisting).
Pick any two of those three.

Problem 7 Snooping on your friends (11 points)
Alice sets up a private wiki page for her friends, running on scripts.berkeley.edu, at

https://scripts.berkeley.edu/∼alice/wiki

Alice has a session cookie in her browser for the wiki page, which is still valid for two
weeks from now. When she visits the wiki site, she is immediately logged in and can
read the content.

Eve doesn’t have an account on Alice’s wiki, but is dying to read what Alice and her
friends are saying on that wiki page. Eve has her own web site running on scripts.berkeley.edu,
at

https://scripts.berkeley.edu/∼eve/

Consider that Eve manages to get Alice to visit Eve’s page. How can Eve get a copy of
Alice’s wiki page?

Note that Alice is security savvy and she employs the following security techniques:

1. Her wiki employs CSRF protection correctly so a CSRF attack won’t work.

2. The session cookie is httpOnly so JavaScript cannot access it.

3. Alice is not susceptible to phishing attacks. She checks the URL carefully wherever
she goes (including the unicode!). When she visits a site that is not hers, including
Eve’s site, she does not provide her password or other sensitive information.

4. Alice will not click on anything in Eve’s page other than visiting the page.

5. She scopes her cookies with domain=scripts.berkeley.edu and a path corresponding
to ∼alice/wiki, so that other users’ servers on scripts.berkeley.edu won’t receive her
cookies.

Describe Eve’s attack here:

Solution: Eve’s page will load https://scripts.berkeley.edu/~alice/wiki in
an iframe. It will also include JavaScript that uses the JavaScript DOM API’s to
read the contents of the iframe (this is allowed by the same-origin policy, since it’s
the same origin) and then send that to a website controlled by Eve.

Midterm 1 Page 7 of 7 CS 161 – Sp 16

