
Popa & Wagner
Spring 2016

CS 161
Computer Security Midterm 2

Problem 1 True or False (10 points)
Circle True or False. Do not justify your answer.

(a) True or False : It is safe (IND-CPA-secure) to encrypt multiple messages in CBC
mode with a constant IV of 0, using the same encryption key each time.

Solution: If you encrypt the same message twice, you’ll get the same ciphertext
both times, so this can’t be IND-CPA-secure.

(b) True or False: It is safe (IND-CPA-secure) to encrypt multiple messages in CBC
mode with a constant IV of 0, as long as the encryption key is different for each
message sent.

Solution: Using a different random key each time provides the randomiza-
tion needed to ensure that each message encrypts to a different random-looking
ciphertext—even if you encrypt the same message twice, you’ll get two different
unrelated ciphertexts.

(c) True or False : Encrypting a message with CBC mode protects the integrity of
the message.

Solution: Encryption doesn’t provide integrity, as you saw in HW3 Problem
2(c).

(d) True or False: It’s ok for multiple people using El Gamal public key encryption
to use the same modulus p.

Solution: Knowing p doesn’t help you compute Bob’s private key (b) from his
public key (gb mod p).

(e) True or False : It’s ok for multiple people using RSA signatures to use the same
modulus n.

Solution: If two people have the same n, then they’ll have the same d, i.e., the
same private key. This means Alice will be to sign messages that look like they
came from Bob.

Page 1 of 14

Problem 2 More True or False (8 points)
In this question, H refers to a secure cryptographic hash function and len(x) is a 128-bit
int storing the length of x. You can assume that x and y are at most one million bytes
long. Circle True or False. Do not justify your answer.

(a) True or False: Let F (x, y) = H(x||y). Given x, y, and F (x, y), it is easy for an
attacker to find x′, y′ such that F (x′, y′) = F (x, y) and x 6= x′.

Solution: Just shift the boundary. For instance if x = builtin and y =
securely, you could use x′ = built and y = insecurely.

(b) True or False : Let F (x, y) = H(len(x)||x||y). Given x, y, and F (x, y), it is easy
for an attacker to find x′, y′ such that F (x′, y′) = F (x, y) and x 6= x′.

Solution: The input to H is uniquely decodable: given len(x)||x||y, x and y
are uniquely determined. In other words, if len(x)||x||y = len(x′)||x′||y′, then we
must have len(x) = len(x′) (since the two input strings match in their first 128
bits), and thus x = x′ and y = y′ (there is no opportunity to shift the boundary,
since x has to have the same length in both input strings).

Thus: if x 6= x′, then len(x)||x||y 6= len(x′)||x′||y′ Since H is collision-resistant,
this means H(len(x)||x||y) 6= H(len(x′)||x′||y′).

(c) True or False : Let F (x, y) = H(len(y)||x||y). Given x, y, and F (x, y), it is easy
for an attacker to find x′, y′ such that F (x′, y′) = F (x, y) and x 6= x′.

Solution: The same reasoning as in part (b): the input to H is uniquely de-
codable. If two inputs to H are equal, then len(y) must be the same in both,
and there’s no opportunity to shift the boundary.

We felt it was sufficiently clear that len(y) is a 128-bit int containing the length
of y. However, we gave credit for True for students who explicitly wrote “I
assume len(y) is variable-length.”

(d) True or False : Let F (x, y) = H(x||len(x)||y). Given x, y, and F (x, y), it is
easy for an attacker to find x′, y′ such that F (x′, y′) = F (x, y) and x 6= x′.

Solution: We gave points to both answers here, based on student feedback.

We can shift the boundary if x is chosen cleverly. Let x′ be arbitrary, and
suppose we choose x so that x = x′||len(x′). Set y′ = len(x)||y. Then you can
verify that x||len(x)||y = x′||len(x′)||y′, so H(x||len(x)||y) = H(x′||len(x′)||y′).

However some students pointed out that they interpreted the question as asking

Midterm 2 Page 2 of 14 CS 161 – Sp 16

whether or not such an attack can always be done, for all x, y. Indeed, it can’t
be done for all x, y; only for x, y with a special structure. Therefore, we gave
credit for either True or False on this question.

Problem 3 Multiple choice (6 points)
Circle all the options that apply.

(a) When using the CBC block chaining mode, if the IV is modified by an attacker
during transmission (so the correct IV was used during encryption, but the receiver
receives the modified value), the recipient can still successfully decrypt:

1. the entire ciphertext

2. none of the ciphertext

3. only the first block

4. all but the first block

5. other set of blocks than above

Solution: CBC decryption looks like this:

(source: Wikipedia)

An incorrect IV will lead to an incorrect first plaintext block, but the rest will
actually be correct, because they do not depend on the IV at all, only the
previous ciphertext block.

Post-exam clarification: option (5) was intended as a “none of the above”.

Mathematically: (note that the IV here is denoted C0)
So we receive C ′0, C1, C2, . . . , Cn instead of C0, C1, C2, . . . , Cn. We decrypt using
the equation Mi = Dk(Ci)⊕Ci−1. This means the recipient will get M1 wrong,
but M2,M3, . . . ,Mn will all be correct.

Midterm 2 Page 3 of 14 CS 161 – Sp 16

(b) Which of the following are properties of CTR mode?

1. encryption can be parallelized

2. decryption can be parallelized

3. the nonce does not have to be random, as long as it never repeats

4. it turns a block cipher into a stream cipher

5. it is more secure than CBC mode

6. it provides integrity and authentication for the message

Solution: Note: Item 3 was ignored for the purposes of grading, because in
lecture we specified that the nonce should be random. Also, the nonce does not
actually have to be random, as long as it does not ever repeat for any block
encrypted using a given key. (There are two variants of CTR mode, and the
requirement on the nonce depends which variant you are using. One variant uses
Ci = Mi ⊕ Ek(IV ||i), and for that variant, the IV doesn’t need to be random;
it just needs to never repeat. Another variant uses Ci = Mi ⊕ Ek(IV + i); for
that variant, the IV needs to be random, or at least to ensure that you never
have IV + i = IV ′ + i′ for any pair of messages.)

CTR isn’t more secure than CBC mode: they’re both secure if they are used
and implemented correctly. If used and implemented correctly, there are no
known attacks on either.

Problem 4 TLS (16 points)
An attacker is trying to attack the company Wahoo and its users. Assume that users al-
ways visit Wahoo’s website with an HTTPS connection, using RSA and AES encryption
(no Diffie-Hellman). (You may assume that Wahoo does not use certificate pinning—
if you don’t know what that is, you can ignore it.) For each of the following attack
scenarios, circle all of the options that an attacker could achieve in that attack scenario.

(a) If the attacker obtains a copy of Wahoo’s certificate, the attacker could:

1. impersonate the Wahoo web server to a user

2. discover some of the plaintext of data sent during a past connection between a
user and Wahoo’s website

3. discover all of the plaintext of data sent during a past connection between a
user and Wahoo’s website

4. replay data that a user previously sent to the Wahoo server over a prior HTTPS
connection

5. none of the above

Midterm 2 Page 4 of 14 CS 161 – Sp 16

Solution: The certificate is public. Anyone can obtain a copy simply by con-
necting to Wahoo’s webserver. So, learning the certificate doesn’t help the
attacker.

(b) If the attacker obtains the private key of a certificate authority trusted by users of
Wahoo, the attacker could:

1. impersonate the Wahoo web server to a user

2. discover some of the plaintext of data sent during a past connection between a
user and Wahoo’s website

3. discover all of the plaintext of data sent during a past connection between a
user and Wahoo’s website

4. replay data that a user previously sent to the Wahoo server over a prior HTTPS
connection

5. none of the above

Solution: The attacker can’t decrypt past data, because the attacker doesn’t
learn Wahoo’s private key—only the CA’s private key. All that the CA’s private
key can be used for is to create bogus certificates, which can be used to fool
the client into thinking it is talking to Wahoo—but doesn’t allow learning past
data. Replays aren’t possible, due to the nonces in the TLS handshake.

(c) If the attacker is a man in the middle on a HTTPS connection between a user and
Wahoo’s website, the attacker could:

1. impersonate the Wahoo web server to this user

2. discover some of the plaintext of data sent during this connection

3. discover all of the plaintext of data sent during this connection

4. discover all of the plaintext of data sent during a past connection between a
user and Wahoo’s website

5. replay data that a user previously sent to the Wahoo server over a prior HTTPS
connection

6. none of the above

Solution: TLS is secure against man-in-the-middle attacks.

(d) Suppose the attacker obtains the private key that was used by Wahoo’s server
during a past connection between a victim and Wahoo’s server, but not the current

Midterm 2 Page 5 of 14 CS 161 – Sp 16

private key. Also, assume that the certificate corresponding to the old private key
has been revoked and is no longer valid. This attacker could:

1. impersonate the Wahoo web server to this user

2. discover all of the plaintext of data sent during a current connection (one where
the current private key is used) between a user and Wahoo’s website

3. discover all of the plaintext of data sent during a past connection (one
where the old private key was used) between a user and Wahoo’s website

4. none of the above

Solution: Since the server is using RSA, an attacker who learns the RSA pri-
vate key can decrypt past sessions (the attacker can decrypt to learn the pre-
master secret, derive the symmetric keys, and decrypt all of the data). This
can’t be used to impersonate the Wahoo server, because the attacker doesn’t
have a valid certificate for the RSA public key that was compromised.

Problem 5 Iliad Identification Integrity scheme (15 points)
Jeff is hired by the big computer company, Iliad, to do a security review of their devices.
All of Iliad’s devices are assigned a unique identification number. Iliad’s devices use
the Iliad Identification Integrity (I3) scheme to protect the integrity of identification
numbers. Each of Iliad’s devices has a unique key K embedded in the hardware that
can only be used for verification with the I3 scheme and can’t be extracted by any means.
In the I3 scheme, when the device is manufactured, it does the following:

1. Generate a random 16-byte identification number N . Output N via a direct physical
link to the factory machine.

2. Generate a random 16-byte IV .

3. Define the plaintext P to be N followed by 16 zero-bytes. Encrypt P with AES-
CBC using the IV and device’s embedded key K, resulting in ciphertext C.

4. Store N , IV , and C on the device’s flash storage.

When Iliad’s products are powered up, they will obtain N as follows:

1. Read IV and C from flash storage.

2. Decrypt C using IV and embedded key K, to get the plaintext P ′.

3. If the last 16 bytes of P ′ are 0 and the first 16 bytes of P ′ match the N stored in
flash, return N . Otherwise, signal an error.

The flash storage has no other protections, and an attacker could potentially tamper
with the data stored on flash.

Answer the following questions.

Midterm 2 Page 6 of 14 CS 161 – Sp 16

(a) Jeff has a hunch that the scheme does not actually protect the integrity of N .
Briefly, what’s the reason for Jeff’s hunch? One sentence should be enough.

Solution: Encryption doesn’t provide integrity.

(b) Upon further investigation, Jeff determines that the I3 scheme is in fact insecure.
Describe how you can modify N , IV and C to have the verification process accept
at least one other N .

Solution:
The original encryption process is:

C1 = E(IV ⊕N)

C2 = E(C1 ⊕ 0)

Therefore you also know:
D(C1) = IV ⊕N

D(C2) = C1

According to the problem statement “key K embedded in the hardware can only
be used for verification with the I scheme and can’t be extracted by any means.”
Therefore, you are not allowed to compute any E() or D() with inputs other than
the ones above as part of your solution. Additionally, your modifications must
maintain the following invariants to be accepted by the verification process as
described:

0 = D(C ′2)⊕ C ′1

N ′ = D(C ′1)⊕ IV ′

The following answers are definitely correct:

Modified value of N = N ′ (where N ′ can be arbitrary 6= N)
Modified value of IV = IV ⊕N ⊕N ′

Modified value of C = C

Alternate answer:
Modified value of N = N ⊕X (X can be anything other than 0)
Modified value of IV = IV ⊕X
Modified value of C = C

Alternate answer: swap N and IV , leave C unchanged.

(c) Jeff now needs to recommend a change to the scheme to make it secure, so that
Iliad won’t lose face. Describe a change to the I3 scheme so that it will actually
protect the integrity of N .

Midterm 2 Page 7 of 14 CS 161 – Sp 16

Solution: Store a MAC of N , instead of encrypting.

Or: store N,MACk(N).

Or, you could use a digital signature. You’d need to modify the key generation
/ key handling to make it work. The factory could generate a RSA keypair
(needs to be unique for each device), embed the public key in hardware (so it
can’t be changed), and store N and a signature on N in the flash memory of
the device. Then the device can verify using the embedded public key.

Problem 6 Name confidentiality in Project 2 (12 points)
Jamie is working on Project 2 (Part 1) and had several ideas for how to keep the filename
secret. Jamie will store the file at id i, where i is computed from the filename n in some
way. For each approach listed below, circle either “secure” or “broken” according to
whether it would meet the requirements for filename confidentiality from Project 2 or
not.

You can assume CBC mode encryption uses a symmetric key that is generated and
stored securely and not known to the attacker. H represents the SHA256 cryptographic
hash function. Don’t justify your answer.

(a) Secure or Broken : i = n.

Solution: Reveals the name to the storage server.

(b) Secure or Broken : i = H(n).

Solution: Not secure when n has low entropy, due to dictionary attacks. See
the Project 2 Part 1 solutions for more explanation.

(c) Secure or Broken : i is a RSA signature on n, using Jamie’s private RSA key.

Solution: Not secure, since the attacker can test a guess at n using the verifi-
cation algorithm and Jamie’s public key. See the Project 2 Part 1 solutions for
more explanation.

(d) Secure or Broken : Encrypt n using AES in CBC mode, with all-zeros IV, and
use the resulting ciphertext (excluding the IV) as i.

Solution: Not secure, since the first 16 bytes of the ciphertext depends only on
the first 16 bytes of n. Consequently, it is vulnerable to chosen-name attacks.
See the Project 2 Part 1 solutions for more explanation.

Midterm 2 Page 8 of 14 CS 161 – Sp 16

(e) Secure or Broken : Encrypt n using AES in CBC mode, with all-zeros IV, and
use the last 16 bytes of the resulting ciphertext as i.

Solution: We gave full credit for both Secure and Broken.

This is equivalent to AES-CBC-MAC with a single key (like AES-EMAC, but
without the final computation using the second key). As Prof. Popa mentioned
in lecture, AES-CBC-MAC is not secure when used with variable-length mes-
sages (as the case here). See also the Wikipedia page on CBC-MAC for more
explanation. As a result, there is a complicated attack that can be used to defeat
name confidentiality, if there is no restriction on the characters in filenames.

However, it was pointed out that in Project 2 we promised that filenames would
use only alphanumeric characters. As a result, that attack wouldn’t be possible,
within the filename constraints listed in Project 2. Therefore, we decided to give
credit for both answers.

(f) Secure or Broken: Encrypt n using AES in CBC mode, with all-zeros IV, and
let j denote the resulting ciphertext. Use i = H(j).

Solution: Secure, because j has high entropy, and hashing a high-entropy value
is safe (it’s not vulnerable to dictionary attacks).

Or, another way to think about it: j depends on both n and k (the AES key),
so this is much like H(n||k), which is secure, as explained in the Project 2 Part
1 solutions.

Problem 7 Computing on encrypted data (10 points)
A cool property of some encryption schemes is that they allow you to compute on
encrypted data! Let Enc(M) denote the encryption of message M . Given C1 and C2

(the ciphertexts for messages M1 and M2), anyone (even without the decryption keys)
can compute a ciphertext C3 that will decrypt to the product M1 ×M2.

The idea is that we want a server in the cloud to do some work for us, but we don’t want
the cloud to see our data. So we give encrypted data to the cloud (without giving the
decryption key to the cloud), and the cloud gives us back the encrypted computation
result. Let’s figure out how the cloud can perform this computation.

(a) Recall the El Gamal scheme: The El Gamal public key is (p, g, h), where x is the
private key and h = gx mod p. The encryption of a message M is Enc(M) =
(gr mod p,M × hr mod p), for a random r.

Given only C1 = Enc(M1) = (s1, t1) and C2 = Enc(M2) = (s2, t2) and the El Gamal
public key, show how the cloud can compute a ciphertext C3 = Enc(M1×M2 mod p).
In other words, show how the cloud can compute a ciphertext C3 that will decrypt
to M1 ×M2 mod p. Show an equation that the cloud can use to compute C3:

Midterm 2 Page 9 of 14 CS 161 – Sp 16

https://en.wikipedia.org/wiki/CBC-MAC#Security_with_fixed_and_variable-length_messages

Solution: C3 = (s1s2 mod p, t1t2 mod p)

(b) Suppose the cloud has two plaintext values u1, u2, each a 1024-bit number. Suppose
the cloud also has two ciphertexts C1 = Enc(x1) and C2 = Enc(x2) that were
computed using RSA encryption, and the cloud knows the RSA public key, but the
cloud doesn’t know x1 or x2 or the RSA private key. How can the cloud compute
a ciphertext C3 = Enc(xu1

1 × xu2
2 mod n) efficiently? You don’t need to justify your

answer or explain why your solution works.

Solution: C3 = Cu1
1 × Cu2

2 mod n

This question was poorly drafted. We didn’t teach you RSA encryption in this
class, so we shouldn’t have asked you about this. Therefore, we gave full credit
to everyone on this question.

In fairness to those who spent a significant amount of time working on this
question and did figure out how to answer it, we gave bonus points to anyone
who answered this question correctly. The bonus points allow to earn back
points you lost on other questions. (The total score on the midterm was still
capped at 100.)

Problem 8 Protocol analysis (15 points)
Alice and Bob want to simulate flipping a fair coin. Ideally, each of them would like to
be sure that the other can’t “cheat” and force the coin to be heads or tails.

For each of the following schemes, determine whether the scheme is secure or not and
then circle “Secure” or “Broken”. If you circle secure, you don’t need to justify your
answer. If you circle broken, give the attack that either Alice or Bob would mount to
give them better than 50% chance of obtaining heads.

In the following, let p be a 2048-bit prime number, g a generator modulo p, and H a
secure cryptographic hash function; these are fixed in advance and known to everyone.
You can assume that both parties complete the protocol. That is, neither party will
refuse to finish the protocol.

(a) Alice randomly picks a such that 0 < a < p and sends ga mod p to Bob. Then,
Bob randomly picks b such that 0 < b < p and sends gb mod p to Alice. Then, both
compute gab mod p. If gab mod p is even, the coin flip is heads; if odd, the coin flip
is tails.

Secure or Broken

Solution: Attack: Before Bob sends anything, he can check whether his choice
of b would cause the coin flip outcome to be heads; if not, he can pick a new b
and try again.

Midterm 2 Page 10 of 14 CS 161 – Sp 16

Alternate solution: a malicious Alice chooses a = p − 1, then gab = 1 mod p
regardless of b, so the coin flip always comes up tails. (The problem statement
said to make it come out heads, but we accepted this answer as well.)

(b) Alice randomly picks a such that 0 < a < p and sends ga mod p to Bob. Then, Bob
randomly picks b such that 0 < b < p and sends b to Alice. Then, Alice sends a to
Bob and Bob checks that it matches what Alice sent earlier. If H(a||b) is even, the
coin flip is heads; if odd, the coin flip is tails.

Secure or Broken

Solution: Explanation: Once Alice has sent ga mod p, she is committed: there
is only a single value a she’ll be able to send later, and she can’t “change her
mind” or lie about what value of a she had in mind, without being detected.
Therefore, there’s no way for Alice to cheat Bob.

Next consider Bob. His only opportunity to try anything malicious is after
Alice has sent ga mod p but before he has sent b (once he sends b, the outcome
is determined and there’s no going back). But as we saw when studying Diffie-
Hellman, knowing ga mod p doesn’t help you find a. So, when Bob receives
ga mod p, he can’t find a, so he won’t be able to predict the value of H(a||b) at
that point.

(c) Alice randomly picks a to be either 0 or 1 and sends H(a) to Bob. Then, Bob
randomly picks b to be either 0 or 1 and sends b to Alice. Then, Alice reveals a to
Bob and Bob checks that it matches what Alice sent earlier. If both picked 0 or
both picked 1, the coin flip is heads. If one picked 0 and the other picked 1, the
coin flip is tails.

Secure or Broken

Solution: Attack: Given H(a), Bob can find a, since there are only two possi-
bilities for a. Then he sends b = a.

(d) Alice randomly picks a such that 0 < a < 2128 and sends H(a) to Bob. Then, Bob
randomly picks “even” or “odd” and sends that to Alice. Then, Alice reveals a to
Bob and Bob checks that it matches what Alice sent earlier. If Bob’s guess about
a was right (e.g., Bob picked “even” and a is even, or Bob picked “odd” and a is
odd), the coin flip outcome is heads, otherwise it is tails.

Secure or Broken

Midterm 2 Page 11 of 14 CS 161 – Sp 16

Solution: Explanation: Similar to part (b), once Alice has sent H(a), she’s
committed—she won’t be able to later lie about what value of a she had in
mind, because that would require finding a collision in A. Therefore, there’s no
way for Alice to cheat Bob.

The situation for Bob is similar to part (b). The preimage resistance of H means
that, after seeing H(a), Bob can’t learn a, and Bob can’t predict whether a is
even or odd—so he has only a 50% chance of guessing right.

(e) Alice randomly picks a such that 0 < a < 2128 and randomly picks an AES key k.
Alice computes c = Ek(a) [the AES-CBC encryption of a, under a random IV; c
includes the IV] and sends c to Bob. Then, Bob randomly picks “even” or “odd”
and sends that to Alice. Then, Alice reveals a and k to Bob and Bob checks that it
matches what Alice sent earlier. If Bob’s guess about a was right (e.g., Bob picked
“even” and a is even, or Bob picked “odd” and a is odd), the coin flip outcome is
heads, otherwise it is tails.

Secure or Broken

Solution: Attack: After Alice receives Bob’s guess, Alice can check whether
the outcome will be heads if she continues honestly. If yes, she can reveal her a
and k. If not, she can pick another key k′, compute a′ = Dk′(a) [the AES-CBC
decryption of c, under key k′], and check if a′, k′ would lead to an outcome of
heads. She keeps picking k′ randomly until she finds a′, k′ that would lead to
an outcome of heads, and she sends this to Bob. Note that everything will look
OK as far as Bob can tell, since a′, k′ are consistent with c.

In other words, Alice can “change her mind” about what a was after seeing
Bob’s guess. This makes it easy for her to cheat and ensure the outcome is
heads.

Problem 9 RSA keypairs (8 points)
You want to generate a RSA keypair and store the private key on two different servers,
one in New York and the other in California.

You have a high-security key storage device that can store up to 150 bits of secret key
material, and will be highly resistant to tampering or reverse engineering. Corporate
policy says that secret key material must not leave those two servers, with the sole
exception that it can be copied between a server and the key storage device via USB.
You are not allowed to transport or communicate any secret key material except on this
key storage device. (For instance, storing a copy of your private key on your laptop’s
hard drive is prohibited. Sending your private key over the Internet is prohibited, even
if it is encrypted before transmission.) The key storage device must never leave your
personal possession. You have only one key storage device and can only afford to take
one trip from California to New York.

Midterm 2 Page 12 of 14 CS 161 – Sp 16

Describe how you can securely generate such a keypair and install it on both servers,
with only one trip from California to New York.

Solution: Use a cryptographically secure PRNG. Store the seed on the key storage
device. Generate a random RSA keypair, but whenever the key generation algorithm
asks for random bits, instead use the next pseudorandom bit from the CSPRNG.
Then both NY and CA will generate the same keypair, since they start from the
same seed.

Or: Pick a 150-bit for a CSPRNG; use the output of the CSPRNG as the randomness
for the RSA key generation algorithm.

Or: Pick a random AES key k and store it on the key storage device. Generate the
infinite stream of pseudorandom bits AESk(0),AESk(1),AESk(2), . . . (like in counter
mode). Do RSA key generation, but use pseudorandom bits from the stream in place
of the random bits needed by key generation.

Note: This is similar to how TLS derives symmetric keys from the pre-master secret
(seed), except here we are deriving asymmetric keys from the seed, so it’s a bit more
challenging.

The challenging part of this problem is that RSA keys are 2048 bits long. A 150-bit
RSA key (e.g., 75-bit primes p, q) is insecure: it’s easy to factor numbers of that size.
Therefore, simply storing the private key on the storage device doesn’t work.

Using the output of a CSPRNG directly as the private key doesn’t quite work. You
can’t use the output of a CSPRNG directly as p, q, as likely the resulting numbers
won’t be prime. With the form of RSA we showed you in class, the public exponent
is 3; as a result, using the output of a CSPRNG directly as d won’t work, because
we need d to satisfy 3d = 1 (mod (p − 1)(q − 1)), and a random d probably won’t
satisfy that equation.

If you read about RSA elsewhere, you might have read about another variant of RSA
where the public exponent e can be arbitrary, so long as ed = 1 (mod (p−1)(q−1)).
With this variant of RSA, it’s possible to put together a solution that almost works:
store a CSPRNG seed on the storage device, then use the first 2048 bits of output
of the CSPRNG as d. The server in CA generates random primes p, q, computes
n = pq and then e = 1/d (mod (p − 1)(q − 1)) and publishes e, n. We travel to
NY with the storage device, and the server in NY rederives d, then downloads the
public key e, n from the CA server over the Internet. This almost works, but not
quite: not all values of d will work; we need d to be relatively prime to (p− 1)(q− 1)
for this to work, and a random d might or might not satisfy those equations. (For
instance, d needs to be odd; that happens with probability only 1/2.) You could fix
up this solution by having the server in CA pick a new seed repeatedly until it finds
one where the corresponding d is OK, though then the solution ends up being a bit
complicated to describe.

Midterm 2 Page 13 of 14 CS 161 – Sp 16

You can’t compress the private key. The private key will look random, and random
data is incompressible.

Midterm 2 Page 14 of 14 CS 161 – Sp 16

