Physics 7C, Fall 2015 Midterm 2 Solutions

Problem 1

At $x=L$, we observe light of wavelength λ to be particularly bright, which means we are observing constructive interference at that wavelength. Figure 1 shows the two interfering light rays that we need to consider. The angular opening θ of the sliver of glass is very small, so the incoming and outgoing rays are all on top of each other and perpendicular to the x axis, although they have been drawn at incoming and outgoing angles in Figure 1 to make them distinguishable. Outside of the glass, the index of refraction is $n_{\text {air }} \approx 1$. The glass has index of refraction $n>n_{\text {air }}$. At $x=L$, the thickness of the glass is $d=L \tan \theta$.

Figure 1
Ray 1:
Ray 1 accumulates a phase of π upon reflection from the upper glass/air interface, since $n>n_{\text {air }}$. Therefore, it accumulates a phase of $\phi_{1}=\pi$.

Ray 2:
Ray 2 travels a distance $2 d$ in the glass. For light of wavelength λ in air, which we observe to be bright, ray 2 accumulates $\frac{2 d}{\lambda_{n}}$ wavelengths as it travels through the glass, where $\lambda_{n}=\frac{\lambda}{n}$ is the wavelength of the light in the glass. Thus, ray 2 accumulates a phase of $2 \pi \frac{2 d}{\lambda_{n}}=2 \pi \frac{2 n L \tan \theta}{\lambda}$ traveling through the glass. Ray 2 does not accumulate a phase of π upon reflection from the lower air/glass interface, since $n_{\text {air }}<n$. Therefore, ray 2 accumulates a
phase of $\phi_{2}=2 \pi \frac{2 n L \tan \theta}{\lambda}$.

Phase difference:

The phase difference between the two rays is

$$
\begin{equation*}
\Delta \phi=\phi_{2}-\phi_{1}=2 \pi \frac{2 n L \tan \theta}{\lambda}-\pi \tag{1}
\end{equation*}
$$

The phase difference must be an integer multiple of 2π to achieve constructive interference at wavelength λ, so $\Delta \phi=2 \pi m$, where m is an integer:

$$
\begin{align*}
2 \pi m & =\Delta \phi \tag{2}\\
& =2 \pi \frac{2 n L \tan \theta}{\lambda}-\pi \tag{3}\\
m & =\frac{2 n L \tan \theta}{\lambda}-\frac{1}{2} \tag{4}\\
\tan \theta & =\frac{2 m+1}{4} \frac{\lambda}{n L} \tag{5}
\end{align*}
$$

At $x=L$, we observe no other wavelengths accentuated, so the thickness $d=L \tan \theta$ must be the minimum thickness for constructive interference at wavelength λ, which implies $m=0$. Therefore,

$$
\begin{align*}
\tan \theta & =\frac{1}{4} \frac{\lambda}{n L} \tag{6}\\
\theta & =\tan ^{-1}\left(\frac{1}{4} \frac{\lambda}{n L}\right) \tag{7}
\end{align*}
$$

Physics 7C, Fall 2015, Midterm 2, Problem 2

At $t=0$ in his stationary frame S, Tom suddenly sees Dick throw a ball towards him with velocity $-u_{B}=-\frac{3}{5} c$. Tom catches the ball with his robotic arm at a time T. Harry is in the moving frame S^{\prime}, moving to the right with speed $v=\frac{4}{5} c$. The origins of S and S^{\prime} are at the same point at $t^{\prime}=t=0$.

a. Where, x_{0}, and when, t_{0}, was the ball thrown in Tom's frame?

There are three events to consider: Dick throws ball ($t_{D}=t_{0}, x_{D}=x_{0}$), Tom sees Dick throw ball $\left(t_{S}=0, x_{S}=0\right)$, and Tom catches ball $\left(t_{C}=T, x_{C}=0\right)$. We must take into account the time it takes for light to travel between Dick and Tom.

The time T between Tom seeing and catching can be used to first solve for x_{0}. We know that the time $t_{S}-t_{D}$ for light to reach Tom from Dick is $\frac{x_{0}}{c}$. The time $t_{C}-t_{D}$ for the ball to reach Tom is $\frac{x_{0}}{\frac{3}{5} c}=\frac{5 x_{0}}{3 c}$. The difference between these two time intervals $t_{C}-t_{S}$ is our given T .

$$
\begin{gather*}
T=t_{C}-t_{S}=\left(t_{C}-t_{D}\right)-\left(t_{S}-t_{D}\right)=\frac{5 x_{0}}{3 c}-\frac{x_{0}}{c}=\frac{2}{3} \frac{x_{0}}{c} \tag{1}\\
x_{0}=\frac{3}{2} c T \tag{2}
\end{gather*}
$$

Now that we know x_{0}, we can use it to solve for t_{0}, using $t_{S}-t_{D}=0-t_{0}=\frac{x_{0}}{c}$.

$$
\begin{equation*}
t_{0}=-\frac{3}{2} T \tag{3}
\end{equation*}
$$

Tom sees Dick throw the ball at $t=0$, but the time Dick actually throws the ball is before - thus the negative t_{0}.
b. Where, x_{0}^{\prime}, and when, t_{0}^{\prime}, was the ball thrown in Harry's frame? (If you cannot get part a, you can express your answer in terms of x_{0} and/or t_{0} for partial credit.)

We transform the event $\left(x_{0}, t_{0}\right)$ into Harry's frame S^{\prime} with a Lorentz boost $\beta=\frac{4}{5}$, and $\gamma=\frac{5}{3}$.

$$
\binom{c t_{0}^{\prime}}{x_{0}^{\prime}}=\left(\begin{array}{cc}
\gamma & -\gamma \beta \tag{4}\\
-\gamma \beta & \gamma
\end{array}\right)\binom{c t_{0}}{x_{0}}=\left(\begin{array}{rr}
\frac{5}{3} & -\frac{4}{3} \\
-\frac{4}{3} & \frac{5}{3}
\end{array}\right)\binom{c t_{0}}{x_{0}}
$$

$$
\begin{equation*}
c t_{0}^{\prime}=\frac{5}{3} c t_{0}-\frac{4}{3} x_{0}, \quad x_{0}^{\prime}=\frac{5}{3} x_{0}-\frac{4}{3} c t_{0} \tag{5}
\end{equation*}
$$

Plugging in our results from part a, $t_{0}=-\frac{3}{2} T$ and $x_{0}=\frac{3}{2} c T$:

$$
\begin{equation*}
t_{0}^{\prime}=-\frac{9}{2} T, \quad x_{0}^{\prime}=\frac{9}{2} c T \tag{6}
\end{equation*}
$$

c. How long did it take the ball to travel from Dick to Tom in Harry's frame? (If you cannot get part a, you can express your answer in terms of x_{0} and/or t_{0} for partial credit.)

The two events we consider are Dick throwing and Tom catching the ball. In frame S these have spacetime coordinates $\left(t_{D}=t_{0}, x_{D}=x_{0}\right)$ and $\left(t_{C}=T, x_{C}=0\right)$, so the intervals we transform are

$$
\begin{equation*}
\Delta t_{C-D}=T-t_{0}, \quad \Delta x_{C-D}=0-x_{0}=-x_{0} \tag{7}
\end{equation*}
$$

Again using the Lorentz transform $\beta=\frac{4}{5}$, and $\gamma=\frac{5}{3}$,

$$
\begin{gather*}
\binom{\Delta c t_{C-D}^{\prime}}{\Delta x_{C-D}^{\prime}}=\left(\begin{array}{cc}
\gamma & -\gamma \beta \\
-\gamma \beta & \gamma
\end{array}\right)\binom{\Delta c t_{C-D}}{\Delta x_{C-D}}=\left(\begin{array}{cc}
\frac{5}{3} & -\frac{4}{3} \\
-\frac{4}{3} & \frac{5}{3}
\end{array}\right)\binom{c\left(T-t_{0}\right)}{-x_{0}} \tag{8}\\
\Delta t_{C-D}^{\prime}=\frac{5}{3}\left(T-t_{0}\right)+\frac{4}{3} \frac{x_{0}}{c} \tag{9}
\end{gather*}
$$

and again plugging in $t_{0}=-\frac{3}{2} T$ and $x_{0}=\frac{3}{2} c T$:

$$
\begin{equation*}
\Delta t_{C-D}^{\prime}=\frac{5}{3} \cdot\left(1-\left(-\frac{3}{2}\right)\right) T+\frac{4}{3} \cdot \frac{3}{2} T=\left(\frac{5}{3} \cdot \frac{5}{2}+\frac{4}{3} \cdot \frac{3}{2}\right) T \tag{10}
\end{equation*}
$$

gives us the result we're looking for:

$$
\begin{equation*}
\Delta t_{C-D}^{\prime}=\frac{37}{6} T \text {. } \tag{11}
\end{equation*}
$$

Problem 3

a) In frame S, the fragment of mass has speed u and it is moving off at an angle θ with respect to the x axis. Therefore, it has velocity $\vec{u}=u_{x} \hat{x}+u_{y} \hat{y}=u \cos \theta \hat{x}+u \sin \theta \hat{y}$, where the speed is $u=\sqrt{\vec{u}^{2}}=\sqrt{\vec{u} \cdot \vec{u}}$, and the angle θ can be written as $\tan \theta=\frac{u_{y}}{u_{x}}$. Frame S^{\prime} is moving in the $+x$ direction with speed $v=\beta c$ with respect to frame S. We can solve this problem using one of several approaches.

Approach 1:

We can write the velocity of the fragment in frame S^{\prime} in terms of the velocity of the fragment in frame S using the velocity transformation

$$
\begin{align*}
& u_{x}^{\prime}=\frac{u_{x}-v}{1-\frac{v u_{x}}{c^{2}}}=\frac{u \cos \theta-v}{1-\frac{v u \cos \theta}{c^{2}}} \tag{1}\\
& u_{y}^{\prime}=\frac{u_{y}}{\gamma\left(1-\frac{v u_{x}}{c^{2}}\right)}=\frac{u \sin \theta}{\gamma\left(1-\frac{v u \cos \theta}{c^{2}}\right)} \tag{2}
\end{align*}
$$

where $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$. In frame S^{\prime}, the fragment is moving off at an angle θ^{\prime} with respect to the x^{\prime} axis, so

$$
\begin{align*}
\tan \theta^{\prime} & =\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{u_{y}}{\gamma\left(u_{x}-v\right)} \tag{3}\\
& =\frac{u \sin \theta}{\gamma(u \cos \theta-\beta c)} \tag{4}
\end{align*}
$$

Approach 2:

The velocity of the fragment is a constant. Therefore, in frame S, the components of the velocity of the fragment can be written as $u_{x}=\frac{\Delta x}{\Delta t}$ and $u_{y}=\frac{\Delta y}{\Delta t}$, where Δx and Δy are the change in the spatial coordinates of the fragment over a time Δt. The angle θ that the fragment makes with the x axis is given by $\tan \theta=\frac{u_{y}}{u_{x}}=\frac{\Delta y}{\Delta x}$. In frame S^{\prime}, the components of the velocity of the fragment can be written as $u_{x}^{\prime}=\frac{\Delta x^{\prime}}{\Delta t^{\prime}}$ and $u_{y}^{\prime}=\frac{\Delta y^{\prime}}{\Delta t^{\prime}}$, where Δx^{\prime} and Δy^{\prime} are the change in the spatial coordinates of the fragment over a time Δt^{\prime}. The angle θ^{\prime} that the fragment makes with the x^{\prime} axis is given by $\tan \theta^{\prime}=\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{\Delta y^{\prime}}{\Delta x^{\prime}}$. We can write the change in the fragment's spacetime coordinates in frame S^{\prime} in terms of those in frame S using the Lorentz transformation

$$
\begin{align*}
c \Delta t^{\prime} & =\gamma(c \Delta t-\beta \Delta x) \tag{5}\\
\Delta x^{\prime} & =\gamma(\Delta x-\beta c \Delta t) \tag{6}\\
\Delta y^{\prime} & =\Delta y \tag{7}
\end{align*}
$$

where $\beta=\frac{v}{c}$ and $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$. In frame $S^{\prime}, \tan \theta^{\prime}$ is given by

$$
\begin{align*}
\tan \theta^{\prime} & =\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{\Delta y^{\prime}}{\Delta x^{\prime}} \tag{8}\\
& =\frac{\Delta y}{\gamma(\Delta x-\beta c \Delta t)}=\frac{\frac{\Delta y}{\Delta t}}{\gamma\left(\frac{\Delta x}{\Delta t}-\beta c\right)}=\frac{u_{y}}{\gamma\left(u_{x}-\beta c\right)} \tag{9}\\
& =\frac{u \sin \theta}{\gamma(u \cos \theta-\beta c)} \tag{10}
\end{align*}
$$

Approach 3:

In frame S, the fragment of mass has four-momentum

$$
\begin{align*}
\mathbf{p} & =\binom{\frac{E}{c}}{\vec{p}}=\binom{\gamma(\vec{u}) m c}{\gamma(\vec{u}) m \vec{u}} \tag{11}\\
& =\left(\begin{array}{c}
\frac{E}{c} \\
p_{x} \\
p_{y}
\end{array}\right)=\left(\begin{array}{c}
\gamma(\vec{u}) m c \\
\gamma(\vec{u}) m u_{x} \\
\gamma(\vec{u}) m u_{y}
\end{array}\right) \tag{12}
\end{align*}
$$

where $\gamma(\vec{u})=\left(1-\frac{\vec{u}^{2}}{c^{2}}\right)^{-1 / 2}$. In frame S, the fragment is moving off at an angle θ with respect to the x axis, so $\tan \theta=\frac{u_{y}}{u_{x}}=\frac{p_{y}}{p_{x}}$.
The four-momentum of the fragment in frame S^{\prime} is

$$
\begin{align*}
\mathbf{p}^{\prime} & =\left(\begin{array}{c}
\frac{E^{\prime}}{\vec{p}^{\prime}}
\end{array}\right)=\binom{\gamma\left(\vec{u}^{\prime}\right) m c}{\gamma\left(\vec{u}^{\prime}\right) m \vec{u}^{\prime}} \tag{13}\\
& =\left(\begin{array}{c}
\frac{E^{\prime}}{c} \\
p_{x}^{\prime} \\
p_{y}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\gamma\left(\vec{u}^{\prime}\right) m c \\
\gamma\left(\vec{u}^{\prime}\right) m u_{x}^{\prime} \\
\gamma\left(\vec{u}^{\prime}\right) m u_{y}^{\prime}
\end{array}\right) \tag{14}
\end{align*}
$$

where $\gamma\left(\vec{u}^{\prime}\right)=\left(1-\frac{\vec{u}^{\prime 2}}{c^{2}}\right)^{-1 / 2}$.
We can write the four-momentum of the fragment in frame S^{\prime} in terms of its fourmomentum in frame S using the Lorentz transformation

$$
\begin{align*}
\mathbf{p}^{\prime} & =\Lambda(\beta \hat{x}) \mathbf{p} \tag{15}\\
\left(\begin{array}{c}
\frac{E^{\prime}}{c} \\
p_{x}^{\prime} \\
p_{y}^{\prime}
\end{array}\right) & =\left(\begin{array}{ccc}
\gamma & -\gamma \beta & 0 \\
-\gamma \beta & \gamma & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
\frac{E}{c} \\
p_{x} \\
p_{y}
\end{array}\right) \tag{16}\\
& =\left(\begin{array}{c}
\gamma\left(\frac{E}{c}-\beta p_{x}\right) \\
\gamma\left(p_{x}-\beta \frac{E}{c}\right) \\
p_{y}
\end{array}\right) \tag{17}
\end{align*}
$$

where $\beta=\frac{v}{c}$ and $\gamma=\frac{1}{\sqrt{1-\beta^{2}}}$.

In frame S^{\prime}, the fragment is moving off at an angle θ^{\prime} with respect to the x^{\prime} axis, so

$$
\begin{align*}
\tan \theta^{\prime} & =\frac{u_{y}^{\prime}}{u_{x}^{\prime}}=\frac{p_{y}^{\prime}}{p_{x}^{\prime}} \tag{18}\\
& =\frac{p_{y}}{\gamma\left(p_{x}-\beta \frac{E}{c}\right)}=\frac{p_{y} / p_{x}}{\gamma\left(1-\beta \frac{E / c}{p_{x}}\right)} \tag{19}\\
& =\frac{\tan \theta}{\gamma\left(1-\beta \frac{c}{u_{x}}\right)}=\frac{\tan \theta}{\gamma\left(1-\beta \frac{c}{u \cos \theta}\right)}=\frac{u \cos \theta \tan \theta}{\gamma(u \cos \theta-\beta c)} \tag{20}\\
& =\frac{u \sin \theta}{\gamma(u \cos \theta-\beta c)} \tag{21}
\end{align*}
$$

b) The problem statement has an error: the expression given is actually the minimum value of $\tan \theta^{\prime}$, not the maximum value. The expression for the maximum value of $\tan \theta^{\prime}$ is identical except that there is no negative sign in front.
The fragment velocity $u<v$ and the angle θ is in the range $0 \leq \theta \leq 2 \pi$. Therefore, physically, θ^{\prime} must be in the range $\frac{\pi}{2}<\theta_{\min }^{\prime} \leq \theta^{\prime} \leq \theta_{\max }^{\prime}<\frac{3 \pi}{2}$. In this region, $\tan \theta^{\prime}$ is a monotonically increasing function of θ^{\prime}, and $\left(\tan \theta^{\prime}\right)_{\min } \leq \tan \theta^{\prime} \leq\left(\tan \theta^{\prime}\right)_{\max }$. The angle $\theta^{\prime}=0$ when $\theta=0, \pi$, or 2π. As θ goes from 0 to 2π, the angle θ^{\prime} starts at π, then decreases to a minimum of $\theta_{\min }^{\prime}$, then increases back to π, then increases to a maximum of $\theta_{\max }^{\prime}$, then decreases back to π. Similarly, as θ goes from 0 to 2π, $\tan \theta^{\prime}$ starts at 0 , then decreases to a minimum of $\left(\tan \theta^{\prime}\right)_{\min }$, then increases back to 0 , then increases to a maximum of $\left(\tan \theta^{\prime}\right)_{\max }$, then decreases back to 0 .
We can find the extrema of $\tan \theta^{\prime}$ by differentiating it with respect to θ and setting the result equal to zero. The derivative of $\tan \theta^{\prime}$ with respect to θ is

$$
\begin{align*}
\frac{d}{d \theta} \tan \theta^{\prime} & =\frac{d}{d \theta} \frac{u \sin \theta}{\gamma(u \cos \theta-\beta c)} \tag{22}\\
& =u \cos \theta \frac{1}{\gamma(u \cos \theta-\beta c)}+u \sin \theta(-1) \frac{-u \sin \theta}{\gamma(u \cos \theta-\beta c)^{2}} \tag{23}\\
& =\frac{u \cos \theta}{\gamma(u \cos \theta-\beta c)}+\frac{u^{2} \sin ^{2} \theta}{\gamma(u \cos \theta-\beta c)^{2}} \tag{24}\\
& =\frac{u \cos \theta(u \cos \theta-\beta c)+u^{2} \sin ^{2} \theta}{\gamma(u \cos \theta-\beta c)^{2}} \tag{25}\\
& =\frac{u^{2}-\beta c u \cos \theta}{\gamma(u \cos \theta-\beta c)^{2}} \tag{26}
\end{align*}
$$

Since $u<v=\beta c$, the denominator is never equal to zero. Let $\tan \theta^{\prime}$ have an extremum at $\theta=\theta^{*}$. Then,

$$
\begin{align*}
0 & =\left.\frac{d}{d \theta} \tan \theta^{\prime}\right|_{\theta=\theta^{*}}=\frac{u^{2}-\beta c u \cos \theta^{*}}{\gamma\left(u \cos \theta^{*}-\beta c\right)^{2}} \tag{27}\\
0 & =u^{2}-\beta c u \cos \theta^{*} \tag{28}\\
\cos \theta^{*} & =\frac{u}{\beta c}=\frac{u}{v} \tag{29}
\end{align*}
$$

This expression is bounded by $0<\cos \theta^{*}=\frac{u}{v}<1$. Since $\cos \theta$ is positive in the ranges $0<\theta<\frac{\pi}{2}$ and $\frac{3 \pi}{2}<\theta<2 \pi$, and both ranges are physically possible, there are two angles θ_{1}^{*} and θ_{2}^{*} at which $\cos \theta_{1}^{*}=\cos \theta_{2}^{*}=\frac{u}{v}$, and thus at which $\tan \theta^{\prime}$ is an extremum. The two angles are related by $\theta_{2}^{*}=2 \pi-\theta_{1}^{*}$. Let angle θ_{1}^{*} be in the range $0<\theta_{1}^{*}<\frac{\pi}{2}$. The sin of this angle is $\sin \theta_{1}^{*}=\frac{\sqrt{v^{2}-u^{2}}}{v}=\sqrt{1-\frac{u^{2}}{v^{2}}}$. Then, angle θ_{2}^{*} is in the range $\frac{3 \pi}{2}<\theta_{2}^{*}<2 \pi$. The \sin of this angle is $\sin \theta_{2}^{*}=-\sin \theta_{1}^{*}=-\sqrt{1-\frac{u^{2}}{v^{2}}}$. From our earlier discussion, we see that θ_{1}^{*} gives $\tan \theta^{\prime}$ its minimum value, and θ_{2}^{*} gives $\tan \theta^{\prime}$ its maximum value, though we can show this explicitly.

The minimum value of $\tan \theta^{\prime}$ is

$$
\begin{align*}
\tan \theta_{\min }^{\prime} & =\frac{u \sin \theta_{1}^{*}}{\gamma\left(u \cos \theta_{1}^{*}-\beta c\right)} \tag{30}\\
& =\frac{1}{\gamma} \frac{u \sqrt{1-\frac{u^{2}}{v^{2}}}}{u \frac{u}{v}-v} \tag{31}\\
& =\frac{1}{\gamma} \frac{u}{v}(-1) \frac{\sqrt{1-\frac{u^{2}}{v^{2}}}}{1-\frac{u^{2}}{v^{2}}} \tag{32}\\
& =-\frac{1}{\gamma} \frac{u}{v}\left(1-\frac{u^{2}}{v^{2}}\right)^{-1 / 2} \tag{33}\\
& =-\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}\left(1-\frac{u^{2}}{v^{2}}\right)^{-1 / 2} \frac{u}{v} \tag{34}
\end{align*}
$$

Since $\tan \theta_{\min }^{\prime}<0$, the angle $\theta_{\min }^{\prime}$ is in the range $\frac{\pi}{2}<\theta_{\min }^{\prime}<\pi$.
Similarly, the maximum value of $\tan \theta^{\prime}$ is

$$
\begin{align*}
\tan \theta_{\max }^{\prime} & =\frac{u \sin \theta_{2}^{*}}{\gamma\left(u \cos \theta_{2}^{*}-\beta c\right)} \tag{35}\\
& =-\frac{u \sin \theta_{1}^{*}}{\gamma\left(u \cos \theta_{1}^{*}-\beta c\right)} \tag{36}\\
& =-\left(\tan \theta^{\prime}\right)_{\min } \tag{37}\\
& =\left(1-\frac{v^{2}}{c^{2}}\right)^{1 / 2}\left(1-\frac{u^{2}}{v^{2}}\right)^{-1 / 2} \frac{u}{v} \tag{38}
\end{align*}
$$

Since $\tan \theta_{\max }^{\prime}>0$, the angle $\theta_{\max }^{\prime}$ is in the range $\pi<\theta_{\max }^{\prime}<\frac{3 \pi}{2}$.

Problem 4

By conservation of 4-momentum:

$$
\binom{E_{M}}{\vec{p}_{M} c}=\binom{E_{1}}{\vec{p}_{1} c}+\binom{E_{2}}{\overrightarrow{p_{2}} c}
$$

Eliminating the second particle by using the invariant scalar product:

$$
\begin{aligned}
m^{2} c^{4} & =\left(E_{2}\right)^{2}-\left(\vec{p}_{2} c\right) \cdot\left(\vec{p}_{2} c\right) \\
& =\left(E_{M}-E_{1}\right)^{2}-\left(\vec{p}_{M} c-\vec{p}_{1} c\right) \cdot\left(\vec{p}_{M} c-\vec{p}_{1} c\right) \\
& =E_{M}^{2}-2 E_{M} E_{1}+E_{1}^{2}-p_{M}^{2} c^{2}+2 \vec{p}_{M} \cdot \vec{p}_{1} c^{2}-p_{1}^{2} c^{2} \\
& =M^{2} c^{4}+m^{2} c^{4}-2 E_{M} E_{1}+2 p_{M} p_{1} c^{2} \cos \theta
\end{aligned}
$$

Isolating the energy of the first particle:

$$
\begin{aligned}
& 2 E_{M} E_{1}=M^{2} c^{4}+2 p_{M} p_{1} c^{2} \cos \theta \\
& 4 E_{M}^{2} E_{1}^{2}=M^{4} c^{8}+4 M^{2} c^{6} p_{M} p_{1} \cos \theta+4 p_{M}^{2} p_{1}^{2} c^{4} \cos ^{2} \theta
\end{aligned}
$$

Rewriting in terms of momentum:

$$
\begin{aligned}
& 4 E_{M}^{2} p_{1}^{2} c^{2}+4 E_{M}^{2} m^{2} c^{4}=M^{4} c^{8}+4 M^{2} c^{6} p_{M} p_{1} \cos \theta+4 p_{M}^{2} p_{1}^{2} c^{4} \cos ^{2} \theta \\
& 4\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right) p_{1}^{2}-4 M^{2} c^{4} p_{M} \cos \theta p_{1}-\left(M^{4} c^{6}-4 E_{M}^{2} m^{2} c^{2}\right)=0
\end{aligned}
$$

By the quadratic formula:

$$
p_{1}=\frac{M^{2} c^{4} p_{M} \cos \theta \pm \sqrt{M^{4} c^{8} p_{M}^{2} \cos ^{2} \theta+\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right)\left(M^{4} c^{6}-4 E_{M}^{2} m^{2} c^{2}\right)}}{2\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right)}
$$

Only the + root actually gives a positive p_{1} (a negative p_{1} means the particle is actually traveling the opposite direction).

Note that the algebra is much simpler if it is assumed that $E_{1} \approx p_{1} c$; i.e. the ultra-relativistic limit:

$$
\begin{aligned}
& 2 E_{M} p_{1} c-2 p_{M} p_{1} c^{2} \cos \theta \approx M^{2} c^{4} \\
& p_{1} \approx \frac{M c^{2}}{2\left(E_{M}-p_{M} c \cos \theta\right)} M c
\end{aligned}
$$

It can also be verified that the above reduces to this in the $m \ll M / 2$ limit:

$$
\begin{aligned}
p_{1} & \approx \frac{M^{2} c^{4} p_{M} \cos \theta+\sqrt{M^{4} c^{8} p_{M}^{2} \cos ^{2} \theta+\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right)\left(M^{4} c^{6}\right)}}{2\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right)} \\
& =\frac{M^{2} c^{4} p_{M} \cos \theta+\sqrt{E_{M}^{2} M^{4} c^{6}}}{2\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right)} \\
& =\frac{\left(M c^{2}\right)(M c)\left(p_{M} c \cos \theta+E_{M}\right)}{2\left(E_{M}^{2}-p_{M}^{2} c^{2} \cos ^{2} \theta\right)} \\
& =\frac{M c^{2}}{2\left(E_{M}-p_{M} c \cos \theta\right)} M c
\end{aligned}
$$

In all cases, the substitution $E_{M}=\sqrt{p_{M}^{2} c^{2}+M^{2} c^{4}}$ needs to be made to get the final answer in terms of the right variables.

Problem 5:

According to Babinet's principle (and remember it is a vector subtraction):

$$
\overrightarrow{E_{C}}(\vec{r}, t)=E_{0} \sin (k x-\omega t) \hat{y}-E_{0} \frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \sin (k r-\omega t) \widehat{r_{\perp}}
$$

Where $\widehat{r_{\perp}}$ is the unit vector pointing to direction perpendicular to \hat{r}. This is the polarization of $\overrightarrow{E_{S}} \cdot \hat{y}$ is the polarization of $\overrightarrow{E_{l}}$.

At the screen we have:

$$
\begin{gathered}
x=L, r=\frac{L}{\cos \theta}, \beta=k D \sin \theta \\
\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}=E_{0} \sin (k L-\omega t) \hat{y}-E_{0} \frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \sin \left(k \frac{L}{\cos \theta}-\omega t\right) \widehat{r_{\perp}}
\end{gathered}
$$

Subtract by component:

$$
\begin{gathered}
{\left[\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}\right]_{y}=E_{0} \sin (k L-\omega t)-E_{0} \frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \sin \left(k \frac{L}{\cos \theta}-\omega t\right) \cos \theta} \\
{\left[\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}\right]_{x}=-E_{0} \frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \sin \left(k \frac{L}{\cos \theta}-\omega t\right) \sin \theta}
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}^{2}=\left[\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}\right]_{x}^{2}+\left[\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}\right]_{y}^{2} \\
=E_{0}^{2}\left[\frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right]^{2} \sin ^{2}\left(k \frac{L}{\cos \theta}-\omega t\right) \sin ^{2} \theta+E_{0}^{2} \sin ^{2}(k L-\omega t) \\
+E_{0}^{2}\left[\frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right]^{2} \sin ^{2}\left(k \frac{L}{\cos \theta}-\omega t\right) \cos ^{2} \theta \\
-2 E_{0}^{2} \frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \cos \theta \sin \left(k \frac{L}{\cos \theta}-\omega t\right) \sin (k D-\omega t)
\end{gathered}
$$

Note the identity for the last term:

$$
\begin{gathered}
\sin \left(k \frac{L}{\cos \theta}-\omega t\right) \sin (k L-\omega t) \\
=\frac{1}{2}\left[\cos k L\left(\frac{1}{\cos \theta}-1\right)-\cos \left(\frac{k L}{\cos \theta}+k L-2 \omega t\right)\right]
\end{gathered}
$$

Applying time average for each term, we have:

$$
\begin{aligned}
\left\langle\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}^{2}\right\rangle & =\frac{1}{2} E_{0}^{2}\left[\frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right]^{2} \sin ^{2} \theta+\frac{1}{2} E_{0}^{2}+\frac{1}{2} E_{0}^{2}\left[\frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right]^{2} \cos ^{2} \theta \\
& -E_{0}^{2} \frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \cos \theta \cos k L\left(\frac{1}{\cos \theta}-1\right)
\end{aligned}
$$

To simplify:

$$
\left\langle\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}^{2}\right\rangle=\frac{1}{2} E_{0}^{2}\left\{\left[\frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right]^{2}+1-\frac{2 \sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \cos \theta \cos k L\left(\frac{1}{\cos \theta}-1\right)\right\}
$$

Therefore, from definition of intensity, we have:

$$
\begin{aligned}
I(\theta)=\left\langle S_{C}(\theta, t)_{\text {screen }}\right\rangle= & \epsilon_{0} c\left\langle\overrightarrow{E_{C}}(\theta, t)_{\text {screen }}^{2}\right\rangle \\
& =\frac{\epsilon_{0} c}{2} E_{0}^{2}\left\{\left[\frac{\sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}}\right]^{2}+1-\frac{2 \sin \left(\frac{\beta}{2}\right)}{\frac{\beta}{2}} \cos \theta \cos k L\left(\frac{1}{\cos \theta}-1\right)\right\}
\end{aligned}
$$

