
CS 188
Spring 2016

Introduction to
Artificial Intelligence Midterm V2

• You have approximately 2 hours and 50 minutes.

• The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.

• For multiple choice questions with circular bubbles, you should only mark ONE option; for those with checkboxes,
you should mark ALL that apply (which can range from zero to all options)

First name

Last name

edX username

Name of Person to Left

Name of Person to Right

For staff use only:
Total /??

1

THIS PAGE IS INTENTIONALLY LEFT BLANK

Q1. [14 pts] Bayes Nets and Joint Distributions
(a) [2 pts] Write down the joint probability distribution associated with the following Bayes Net. Express the

answer as a product of terms representing individual conditional probabilities tables associated with this Bayes
Net:

A B

C D

E

P (A)P (B)P (C|A,B)P (D|A,B)P (E|C,D)

(b) [2 pts] Draw the Bayes net associated with the following joint distribution:
P (A) · P (B) · P (C|A,B) · P (D|C) · P (E|B,C)

A B

C

D

E

(c) [3 pts] Do the following products of factors correspond to a valid joint distribution over the variables A,B,C,D?
(Circle TRUE or FALSE.)

(i) TRUE FALSE P (A) · P (B) · P (C|A) · P (C|B) · P (D|C)

(ii) TRUE FALSE P (A) · P (B|A) · P (C) · P (D|B,C)

(iii) TRUE FALSE P (A) · P (B|A) · P (C) · P (C|A) · P (D)

(iv) TRUE FALSE P (A|B) · P (B|C) · P (C|D) · P (D|A)

3

(d) What factor can be multiplied with the following factors to form a valid joint distribution? (Write “none” if
the given set of factors can’t be turned into a joint by the inclusion of exactly one more factor.)

(i) [2 pts] P (A) · P (B|A) · P (C|A) · P (E|B,C,D)
P(D) is missing. D could also be conditioned on A,B, and/or C without creating a cycle (e.g. P (D|A,B,C)).
Here is an example bayes net that would represent the distribution after adding in P (D):

A B

C

D

E

(ii) [2 pts] P (D) · P (B) · P (C|D,B) · P (E|C,D,A)
P(A) is missing to form a valid joint distributions. A could also be conditioned on B, C, and/or D (e.g.
P (A|B,C,D). Here is a bayes net that would represent the distribution if P (A|D) was added in.

D B

A C

E

(e) Answer the next questions based off of the Bayes Net below:
All variables have domains of {-1, 0, 1}

A

D E

B

F

C

G

(i) [1 pt] Before eliminating any variables or including any evidence, how many entries does the factor at G
have?
The factor is P (G|B,C), so that gives 33 = 27 entries.

(ii) [2 pts] Now we observe e = 1 and want to query P (D|e = 1), and you get to pick the first variable to be
eliminated.

• Which choice would create the largest factor f1?
EliminatingB first would give the largest f1:, f1(A,F,G,C, e) =

∑
B=b P (b)P (e|A, b)P (F |b)P (G|b, C)P (C|b).

This factor has 34 entries.

• Which choice would create the smallest factor f1?
Eliminating A or eliminating F first would give smallest factors of 3 entries: either f1(D, e) =∑
a P (D|a)P (e|a)P (a) or f1(B) =

∑
f P (f |B). Eliminating D is not correct because D is the query

variable.

4

Q2. [8 pts] Pacman’s Life
Suppose a maze has height M and width N and there are F food pellets at the beginning. Pacman can move North,
South, East or West in the maze.

(a) [4 pts] In this subquestion, the position of Pacman is known, and he wants to pick up all F food pellets in the
maze. However, Pacman can move North at most two times overall.

What is the size of a minimal state space for this problem? Give your answer as a product of terms that
reference problem quantities such as (but not limited to) M,N,F , etc. Below each term, state the information
it encodes. For example, you might write 4 ×MN and write number of directions underneath the first term
and Pacman’s position under the second.
MN × 2F × 3. Pacman’s position, a boolean vector representing whether a certain food pellet has been eaten,
and the number of times Pacman has moved North (which could be 0, 1 or 2).

(b) [4 pts] In this subquestion, Pacman is lost in the maze, and does not know his location. However, Pacman still
wants to visit every single square (he does not care about collecting the food pellets any more). Pacman’s task
is to find a sequence of actions which guarantees that he will visit every single square.

What is the size of a minimal state space for this problem? As in part(a), give your answer as a product of
terms along with the information encoded by each term. You will receive partial credit for a complete but
non-minimal state space.
2((MN)2). For every starting location, we need a boolean for every position (MN) to keep track of all the
visited locations. In other words, we need MN sets of MN booleans for a total of (MN)2 booleans. Hence,

the state space is 2((MN)2).

5

Q3. [13 pts] MDPs: Dice Bonanza
A casino is considering adding a new game to their collection, but need to analyze it before releasing it on their floor.
They have hired you to execute the analysis. On each round of the game, the player has the option of rolling a fair
6-sided die. That is, the die lands on values 1 through 6 with equal probability. Each roll costs 1 dollar, and the
player must roll the very first round. Each time the player rolls the die, the player has two possible actions:

1. Stop: Stop playing by collecting the dollar value that the die lands on, or

2. Roll: Roll again, paying another 1 dollar.

Having taken CS 188, you decide to model this problem using an infinite horizon Markov Decision Process (MDP).
The player initially starts in state Start, where the player only has one possible action: Roll. State si denotes the
state where the die lands on i. Once a player decides to Stop, the game is over, transitioning the player to the End
state.

(a) [4 pts] In solving this problem, you consider using policy iteration. Your initial policy π is in the table below.
Evaluate the policy at each state, with γ = 1.

State s1 s2 s3 s4 s5 s6

π(s) Roll Roll Stop Stop Stop Stop

V π(s) 3 3 3 4 5 6

We have that si = i for i ∈ {3, 4, 5, 6}, since the player will be awarded no further rewards according to the
policy. From the Bellman equations, we have that V (s1) = −1 + 1

6 (V (s1) + V (s2) + 3 + 4 + 5 + 6) and that
V (s2) = −1 + 1

6 (V (s1) + V (s2) + 3 + 4 + 5 + 6). Solving this linear system yields V (s1) = V (s2) = 3.

(b) [4 pts] Having determined the values, perform a policy update to find the new policy π′. The table below shows
the old policy π and has filled in parts of the updated policy π′ for you. If both Roll and Stop are viable new
actions for a state, write down both Roll/Stop. In this part as well, we have γ = 1.

State s1 s2 s3 s4 s5 s6

π(s) Roll Roll Stop Stop Stop Stop

π′(s) Roll Roll Roll/Stop Stop Stop Stop

For each si in part (a), we compare the values obtained via Rolling and Stopping. The value of Rolling for
each state si is −1 + 1

6 (3 + 3 + 3 + 4 + 5 + 6) = 3. The value of Stopping for each state si is i. At each state
si, we take the action that yields the largest value; so, for s1 and s2, we Roll, and for s4 and s5, we stop. For
s3, we Roll/Stop, since the values from Rolling and Stopping are equal.

6

(c) [2 pts] Is π(s) from part (a) optimal? Explain why or why not.
Yes, the old policy is optimal. Looking at part (b), there is a tie between 2 equally good policies that policy
iteration considers employing. One of these policies is the same as the old policy. This means that both
new policies are as equally good as the old policy, and policy iteration has converged. Since policy iteration
converges to the optimal policy, we can be sure that π(s) from part (a) is optimal.

(d) [3 pts] Suppose that we were now working with some γ ∈ [0, 1) and wanted to run value iteration. Select the
one statement that would hold true at convergence, or write the correct answer next to Other if none of the
options are correct.

V ∗(si) = max

−1 +
i

6
,
∑
j

γV ∗(sj)

V ∗(si) = max

i , 1

6
·

−1 +
∑
j

γV ∗(sj)

V ∗(si) = max

−1

6
+ i ,

∑
j

γV ∗(sj)

V ∗(si) = max

i , −1

6
+
∑
j

γV ∗(sj)

V ∗(si) =

1

6
·
∑
j

max {i , −1 + γV ∗(sj)}

V ∗(si) =
1

6
·
∑
j

max

{
−1 + i ,

∑
k

V ∗(sj)

}

V ∗(si) =
∑
j

max

{
−1 + i ,

1

6
· γV ∗(sj))

}

V ∗(si) =
∑
j

max

{
i

6
, −1 + γV ∗(sj)

}

 V ∗(si) = max

i , −1 +
γ

6

∑
j

V ∗(sj)

V ∗(si) =

∑
j

max

{
i , −1

6
+ γV ∗(sj)

}

V ∗(si) =
∑
j

max

{
−i
6

, −1 + γV ∗(sj)

}

Other

7

Q4. [12 pts] MDPs: Value Iteration
An agent lives in gridworld G consisting of grid cells s ∈ S, and is not allowed to move into the cells colored black.
In this gridworld, the agent can take actions to move to neighboring squares, when it is not on a numbered square.
When the agent is on a numbered square, it is forced to exit to a terminal state (where it remains), collecting a
reward equal to the number written on the square in the process.

Gridworld G

You decide to run value iteration for gridworld G. The value function at iteration k is Vk(s). The initial value for all
grid cells is 0 (that is, V0(s) = 0 for all s ∈ S). When answering questions about iteration k for Vk(s) , either answer
with a finite integer or ∞. For all questions, the discount factor is γ = 1.

(a) Consider running value iteration in gridworld G. Assume all legal movement actions will always succeed
(and so the state transition function is deterministic).

(i) [2 pts] What is the smallest iteration k for which Vk(A) > 0? For this smallest iteration k, what is the
value Vk(A)?

k = 3 Vk(A) = 10

The nearest reward is 10, which is 3 steps away. Because γ = 1, there is no decay in the reward, so the
value propagated is 10.

(ii) [2 pts] What is the smallest iteration k for which Vk(B) > 0? For this smallest iteration k, what is the
value Vk(B)?

k = 3 Vk(B) = 1

The nearest reward is 1, which is 3 steps away. Because γ = 1, there is no decay in the reward, so the
value propagated is 1.

(iii) [2 pts] What is the smallest iteration k for which Vk(A) = V ∗(A)? What is the value of V ∗(A)?

k = 3 V ∗(A) = 10

Because γ = 1, the problem reduces to finding the distance to the highest reward (because there is no
living reward). The highest reward is 10, which is 3 steps away.

(iv) [2 pts] What is the smallest iteration k for which Vk(B) = V ∗(B)? What is the value of V ∗(B)?

k = 6 V ∗(B) = 10

Because γ = 1, the problem reduces to finding the distance to the highest reward (because there is no living
reward). The highest reward is 10, which is 6 steps away.

(b) [4 pts] Now assume all legal movement actions succeed with probability 0.8; with probability 0.2, the action
fails and the agent remains in the same state.
Consider running value iteration in gridworld G. What is the smallest iteration k for which Vk(A) = V ∗(A)?
What is the value of V ∗(A)?

8

k = ∞

V ∗(A) = 10

Because γ = 1 and the only rewards are in the exit states, the optimal policy will move to the exit state with
highest reward. This is guaranteed to ultimately succeed, so the optimal value of state A is 10. However,
because the transition is non-deterministic, it’s not guaranteed this reward can be collected in 3 steps. It could
any number of steps from 3 through infinity, and the values will only have converged after infinitely many
iterations.

9

Q5. [8 pts] Q-learning
Consider the following gridworld (rewards shown on left, state names shown on right).

Rewards State names

From state A, the possible actions are right(→) and down(↓). From state B, the possible actions are left(←) and
down(↓). For a numbered state (G1, G2), the only action is to exit. Upon exiting from a numbered square we collect
the reward specified by the number on the square and enter the end-of-game absorbing state X. We also know that
the discount factor γ = 1, and in this MDP all actions are deterministic and always succeed.

Consider the following episodes:

Episode 1 (E1)

s a s′ r
A ↓ G1 0
G1 exit X 10

Episode 2 (E2)

s a s′ r
B ↓ G2 0
G2 exit X 1

Episode 3 (E3)

s a s′ r
A → B 0
B ↓ G2 0
G2 exit X 1

Episode 4 (E4)

s a s′ r
B ← A 0
A ↓ G1 0
G1 exit X 10

(a) [4 pts] Consider using temporal-difference learning to learn V (s). When running TD-learning, all values are
initialized to zero.
For which sequences of episodes, if repeated infinitely often, does V (s) converge to V ∗(s) for all states s?

(Assume appropriate learning rates such that all values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

� E1, E2, E3, E4 � E1, E2, E1, E2 � E1, E2, E3, E1 � E4, E4, E4, E4
� E4, E3, E2, E1 � E3, E4, E3, E4 � E1, E2, E4, E1

� Other See explanation below

TD learning learns the value of the executed policy, which is V π(s). Therefore for V π(s) to converge to V ∗(s),
it is necessary that the executing policy π(s) = π∗(s).

Because there is no discounting since γ = 1, the optimal deterministic policy is π∗(A) = ↓ and π∗(B) = ←
(π∗(G1) and π∗(G2) are trivially exit because that is the only available action). Therefore episodes E1 and E4
act according to π∗(s) while episodes E2 and E3 are sampled from a suboptimal policy.

From the above, TD learning using episode E4 (and optionally E1) will converge to V π(s) = V ∗(s) for states
A, B, G1. However, then we never visit G2, so V (G2) will never converge. If we add either episode E2 or E3
to ensure that V (G2) converges, then we are executing a suboptimal policy, which will then cause V (B) to not
converge to V ∗(B). Therefore none of the listed sequences will learn a value function V π(s) that converges to
V ∗(s) for all states s. An example of a correct sequence would be E2, E4, E4, E4, ...; sampling E2 first with
the learning rate α = 1 ensures V π(G2) = V ∗(G2), and then executing E4 infinitely after ensures the values
for states A, B, and G1 converge to the optimal values.

10

We also accepted the answer such that the value function V (s) converges to V ∗(s) for states A and B (ignoring
G1 and G2). TD learning using only episode E4 (and optionally E1) will converge to V π(s) = V ∗(s) for states
A and B, therefore the only correct listed option is E4, E4, E4, E4.

(b) [4 pts] Consider using Q-learning to learn Q(s, a). When running Q-learning, all values are initialized to zero.
For which sequences of episodes, if repeated infinitely often, does Q(s, a) converge to Q∗(s, a) for all state-action
pairs (s, a)

(Assume appropriate learning rates such that all Q-values converge.)
Write the correct sequence under “Other” if no correct sequences of episodes are listed.

� E1, E2, E3, E4 � E1, E2, E1, E2 � E1, E2, E3, E1 � E4, E4, E4, E4
� E4, E3, E2, E1 � E3, E4, E3, E4 � E1, E2, E4, E1

� Other

For Q(s, a) to converge, we must visit all state action pairs for non-zero Q∗(s, a) infinitely often. Therefore we
must take the exit action in states G1 and G2, must take the down and right action in state A, and must take
the left and down action in state B. Therefore the answers must include E3 and E4.

11

Q6. [9 pts] Utilities
PacLad and PacLass are arguing about the value of eating certain numbers of pellets. Neither knows their exact
utility functions, but it is known that they are both rational and that PacLad prefers eating more pellets to eating
fewer pellets. For any n, let En be the event of eating n pellets. So for PacLad, if m ≥ n, then Em � En. For any n
and any k < n, let Ln±k refer to a lottery between En−k and En+k, each with probability 1

2 .
Reminder: For events A and B, A ∼ B denotes that the agent is indifferent between A and B, while A � B denotes
that A is preferred to B.

(a) [2 pts] Which of the following are guaranteed to be true? Circle TRUE or FALSE accordingly.

(i) TRUE FALSE Under PacLad’s preferences, for any n, k, Ln±k ∼ En.
All we know is that PacLad’s utility is an increasing function of the number of pellets. One utility function
consistent with this is U(En) = 2n. Then the expected utility of L2±1 is 1

2U(E1)+ 1
2U(E3) = 1

2 (2+8) = 5.
Since U(E2) = 22 = 4, L2±1 � E2. The only class of utility functions that give the guarantee that this
claim is true is linear utility functions. This is a mathematical way of writing the PacLad is risk-neutral;
but this is not given as an assumption in the problem. 2n is a good counterexample because it is a
risk-seeking utility function. A risk-avoiding utility function would have worked just as well.

(ii) TRUE FALSE Under PacLad’s preferences, for any k, if m ≥ n, then Lm±k � Ln±k.
The expected utility of Lm±k is 1

2U(Em−k) + 1
2U(Em+k), and that of Ln±k is 1

2U(En−k) + 1
2U(En+k).

Since m − k ≥ n − k, Em−k � En−k, so U(Em−k) ≥ U(En−k). Similarly, since m + k ≥ n + k,
Em+k � En+k, so U(Em+k) ≥ U(En+k). Thus 1

2U(Em−k) + 1
2U(Em+k) ≥ 1

2U(En−k) + 1
2U(En+k) and

therefore Lm±k � Ln±k.

(iii) TRUE FALSE Under PacLad’s preferences, for any k, l, if m ≥ n, then Lm±k � Ln±l.
Consider again the utility function U(En) = 2n. It is a risk-seeking utility function as mentioned in part
(i), so we should expect that if this were PacLad’s utility function, he would prefer a lottery with higher
variance (i.e. a higher k value). So for a counterexample, we look to L3±1 and L3±2 (i.e. m = n = 3,
k = 1, l = 2). The expected utility of L3±1 is 1

2U(E2) + 1
2U(E4) = 1

2 (4 + 16) = 10. The expected utility
of L3±2 is 1

2U(E1) + 1
2U(E5) = 1

2 (2 + 32) = 17 > 10. Thus Ln±l � Lm±k. Once again, this is a statement
that would only be true for a risk-neutral utility function. A risk-avoiding utility function could also have
been used for a counterexample.

(b) To decouple from the previous part, suppose we are given now that under PacLad’s preferences, for any n, k,
Ln±k ∼ En. Suppose PacLad’s utility function in terms of the number of pellets eaten is U1. For each of the
following, suppose PacLass’s utility function, U2, is defined as given in terms of U1. Choose all statements
which are guaranteed to be true of PacLass’s preferences under each definition. If none are guaranteed to be
true, choose “None.” You should assume that all utilities are positive (greater than 0).

(i) [2 pts] U2(n) = aU1(n) + b for some positive integers a, b

� L4±1 ∼ L4±2 � E4 � E3 � L4±1 � E4 � None

The guarantee that under PacLad’s preferences for any n, k, Ln±k ∼ En means that PacLad is risk-neutral
and therefore his utility function is linear. An affine transformation, as this aU1(n)+b is called, of a linear
function is still a linear function, so we have that PacLass’s utility function is also linear and thus she is
also risk-neutral. Therefore she is indifferent to the variance of lotteries with the same expectation (first
option) and she does not prefer a lottery to deterministically being given the expectation of that lottery
(not third option). Since a is positive, U2 is also an increasing function (second option).

(ii) [2 pts] U2(n) = 1
U1(n)

� L4±1 ∼ L4±2 � E4 � E3 � L4±1 � E4 � None

Since U1 is an increasing function, U2 is decreasing, and thus the preferences over deterministic outcomes
are flipped (not second option).

The expected utility of L4±1 is 1
2 (U2(3) + U2(5)) = 1

2

(
1

U1(3)
+ 1

U1(5)

)
. We know that U1 is linear, so

write U1(n) = an + b for some a, b. Then substituting this into this expression for E[U2(L4±1)] and

12

simplifying algebraically yields 1
2

(
8a+2b

15a2+8ab+b2

)
= 4a+b

15a2+8ab+b2 . By the same computation for L4±2, we

get E[U2(L4±2)] = 4a+b
12a2+8ab+b2 . Since we only know that U1 is increasing and linear, the only constraint

on a and b is that a is positive. So let a = 1, b = 0. Then E[U2(L4±2)] = 1
3 >

4
15 = E[U2(L4±1)] and thus

L4±2 � L4±1 (not first option). Similarly, for this U1, U2(4) = 1
U1(4)

= 1
4 <

1
3 = E[U2(L4±2)] and thus

L4±1 � E4 (third option).

What follows is a more general argument that could have been used to answer this question if particular
numbers were not specified.

In order to determine PacLass’s attitude toward risk, we take the second derivative of U2 with respect to

n. By the chain rule, dU2(n)
dn = dU2(n)

dU1(n)
· dU1(n)

dn . Since U1 is an increasing linear function of n, dU1(n)
dn is some

positive constant a, so dU2(n)
dn = adU2(n)

dU1(n)
= −a 1

(U1(n))2
. Taking the derivative with respect to n again and

using the chain rule yields d2U2(n)
dn2 = d

dU1(n)

(
−a 1

(U1(n))2

)
· dU1(n)

dn = 1
2a

2 1
(U1(n))3

. U1 is always positive, so

this is a positive number and thus the second derivative of PacLass’s utility function is everywhere positive.
This means the utility function is strictly convex (equivalently “concave up”), and thus all secant lines on
the plot of the curve lie above the curve itself.

In general, strictly convex utility functions are risk-seeking. To see this, consider Ln±k and En. The
expected utility of Ln±k is 1

2U2(n− k) + 1
2U2(n+ k), which corresponds to the midpoint of the secant line

drawn between the points (n − k, U2(n − k)) and (n + k, U2(n + k)), which both lie on the curve. That
point is (n,E[U(Ln±k)]) = (n, 12U2(n − k) + 1

2U2(n + k)). The utility of En is U(n), which lies on the
curve at the point (n,U2(n)). Since U2 is strictly convex, the secant line lies above the curve, so we must
have E[U2(Ln±k)] > U(n).

With that proof that PacLass is risk-seeking, we can address the remaining two options: she is not indif-
ferent to the variance of a lottery (not the first option), and she prefers the lottery over the deterministic
outcome (the third option).

NOTE: “decoupling from the previous part” could have been interpreted as ”decoupling from part (a)”
(intended meaning) or ”decouple from everything in this question so far.” The latter interpretation loses
the assumption of monotonicity of the utility function. Recognizing this was ambiguous, we have awarded
points if the answers in (b) were consistent with not assuming monotonicity.

PacLass is in a strange environment trying to follow a policy that will maximize her expected utility. Assume that
U is her utility function in terms of the number of pellets she receives.

In PacLass’s environment, the probability of ending up in state s′ after taking action a from state s is T (s, a, s′).
At every step, PacLass finds a locked chest containing C(s, a, s′) pellets, and she can either keep the old chest she
is carrying or swap it for the new one she just found. At a terminal state(but never before) she receives the key to
open the chest she is carrying and gets all the pellets inside. Each chest has the number of pellets it contains written
on it, so PacLass knows how many pellets are inside without opening each chest.

(c) [3 pts] Which is the appropriate Bellman equation for PacLass’s value function? Write the correct answer next
to ‘Other’ if none of the listed options are correct.

V ∗(s) = maxa
∑
s′ T (s, a, s′)[U(C(s, a, s′)) + V ∗(s′)]

V ∗(s) = maxa
∑
s′ T (s, a, s′)U(C(s, a, s′) + V ∗(s′))

 V ∗(s) = maxa
∑
s′ T (s, a, s′) max {U(C(s, a, s′)), V ∗(s′)}

V ∗(s) = maxa
∑
s′ T (s, a, s′) max {U(C(s, a, s′)), U(V ∗(s′))}

V ∗(s) = maxa
∑
s′ T (s, a, s′)U (max {C(s, a, s′), V ∗(s′)})

V ∗(s) = maxa
∑
s′ T (s, a, s′)U (max {U(C(s, a, s′)), V ∗(s′)})

Other

First see that unlike in a normal MDP where we maximize the sum of rewards, PacLass only gets utility from
one chest, so her utility is a function of the maximum reward she receives. At state s, we choose the action a
which maximizes PacLass’s expected utility, as normal. To take that expectation, we sum over each outcome s′

13

of taking action a from state s. The terms of that sum are the probability of each outcome multiplied with the
utility of each action. In a normal (undiscounted) MDP, the utility of the triple (s, a, s′) is [R(s, a, s′)+V ∗(s′)].
Here, instead of taking the sum, we have to take the max. But in this MDP, unlike in a normal MDP, we have
a unit mismatch (equivalently a type mismatch) between the rewards, which are in units of food pellets, and
PacLass’s utility (which is in general units of utility). This is crucially important because PacLass’s utility is
not given to be increasing; maximizing C(s, a, s′) directly is not guaranteed to maximize utility. Since value is
defined to be the expected utility of acting optimally starting from state s, V ∗ represents a utility, so it does
not make sense to take U(V ∗(s′)). We must compare the utility of taking the new chest containing C(s, a, s′)
pellets, U(C(s, a, s′)) to the utility of taking some other chest, V ∗(s′). Thus the only correct answer is the
third option.

14

Q7. [17 pts] CSPs with Preferences
Let us formulate a CSP with variables A, B, C, D, and domains of {1, 2, 3} for each of these variables. A valid
assignment in this CSP is defined as a complete assignment of values to variables which satisfies the following
constraints:

1. B will not ride in car 2.

2. A and B refuse to ride in the same car.

3. The sum of the car numbers for B and C is less than 4.

4. A’s car number must be greater than C’s car number.

5. B and D refuse to ride in the same car.

6. C’s car number must be lesser than D’s car number.

(a) [2 pts] Draw the corresponding constraint graph for this CSP.

Although there are several valid assignments which exist for this problem, A, B, C and D have additional “soft”
preferences on which value they prefer to be assigned. To encode these preferences, we define utility functions
UV ar(V al) which represent how preferable an assignment of the value(Val) to the variable(Var) is.

For a complete assignment P = {A : VA, B : VB ,D : VD}, the utility of P is defined as the sum of the utility
values: UA(VA) +UB(VB) +UC(VC) +UD(VD). A higher utility for P indicates a higher preference for that complete
assignment. This scheme can be extended to an arbitrary CSP, with several variables and values.

We can now define a modified CSP problem, whose goal is to find the valid assignment which has the maximum
utility amongst all valid assignments.

(b) [2 pts] Suppose the utilities for the assignment of values to variables is given by the table below

U UA UB UC UD

1 7 10 200 2000
2 6 20 300 1000
3 5 30 100 3000

Under these preferences, given a choice between the following complete assignments which are valid solutions
to the CSP, which would be the preferred solution.

A:3 B:1 C:1 D:2

 A:3 B:1 C:2 D:3

A:2 B:1 C:1 D:2

A:3 B:1 C:1 D:3

Solution 2 has value UA(3)+UB(1)+UC(2)+UD(3) = 5+10+300+3000 = 3315, which is the highest amongst
the choices

15

To decouple from the previous questions, for the rest of the question, the preference utilities are not necessarily the
table shown above but can be arbitrary positive values.

This problem can be formulated as a modified search problem, where we use the modified tree search shown below
to find the valid assignment with the highest utility, instead of just finding an arbitrary valid assignment.

The search formulation is:

• State space: The space of partial assignments of values to variables

• Start state: The empty assignment

• Goal Test: State X is a valid assignment

• Successor function: The successors of a node X are states which have partial assignments which are the
assignment in X extended by one more assignment of a value to an unassigned variable, as long as this assignment
does not violate any constraints

• Edge weights: Utilities of the assignment made through that edge

In the algorithm below f(node) is an estimator of distance from node to goal, Accumulated-Utility-From-Start(node)
is the sum of utilities of assignments made from the start-node to the current node.

function ModifiedTreeSearch(problem, start-node)
fringe← Insert(key : start-node, value : f(start-node))
do

if IsEmpty(fringe) then
return failure

end if
node, cost ← remove entry with maximum value from fringe
if Goal-Test(node) then

return node
end if
for child in Successors(node) do

fringe← Insert(key : child, value : f(child) + Accumulated-Utility-From-Start(child))
end for

while True
end function

(c) Under this search formulation, for a node X with assigned variables {v1, v2....vn} and unassigned variables
{u1, u2, u3...um}
(i) [4 pts] Which of these expressions for f(X) in the algorithm above, is guaranteed to give an optimal

assignment according to the preference utilities. (Select all that apply)

� f1 = minV al1,V al2,...V alm Uu1
(V al1) + Uu2

(V al2) ++ Uum
(V alm)

� f2 = maxV al1,V al2,...V alm Uu1(V al1) + Uu2(V al2) ++ Uum(V alm)

� f3 = minV al1,V al2,...V alm Uu1
(V al1) + Uu2

(V al2) + + Uum
(V alm) such that the complete

assignment satisfies constraints.
� f4 = maxV al1,V al2,...V alm Uu1

(V al1) + Uu2
(V al2) + + Uum

(V alm) such that the complete
assignment satisfies constraints.

� f5 = Q, a fixed extremely high value (� sum of all utilities) which is the same across all states

� f6 = 0
Because we have a maximum search we need an overestimator of cost instead of an underestimator for
the function f , like standard A∗ search. ModifiedTreeSearch is A∗ search picking the maximum node
from the fringe instead of the minimum. This requires an overestimator instead of an understimator to
ensure optimality of the tree search. Additionally, for options f5, f6, we add a constant number to each
state, which doesn’t change the relative ordering of states at all. So the algorithm then behaves similar to
uniform cost search picking maximum value instead of minimum, which would lead to optimality as well.

16

(ii) [3 pts] For the expressions for f(X) which guaranteed to give an optimal solution in part(i) among
f1, f2, f3, f4, f5, f6, order them in ascending order of number of nodes expanded by ModifiedTreeSearch.
Based on the dominance of heuristics, but modified to be an overestimate instead of an underestimate in
standard A* search. Hence the closer the estimate is to the actual cost, the better it does in terms of
number of nodes expanded. Options 5 and 6 are poor heuristics and just behave like UCS. So the ordering
is option 4 < option 2 < option 5 = option 6.

(d) In order to make this search more efficient, we want to perform forward checking such that, for every assignment
of a value to a variable, we eliminate values from the domains of other variables, which violate a constraint
under this assignment. Answer the following questions formulating the state space and successor function for
a search problem such that the same algorithm [1] performs forward checking under this formulation.

(i) [3 pts] Briefly describe the minimal state space representation for this problem? (No state space size is
needed, just a description will suffice)
Each element of the state space is a partial assignment along with the domains of all variables

(ii) [3 pts] What is the Successor function for this problem?
The successors for a node X, are generated by picking an unassigned variable and a corresponding value to
assign to it. The successor state has a partial assignment which is the partial assignment of X, extended
by the new value assignment which we picked. It is important then to also prune the domains of the
remaining unassigned variables using forward checking to remove values which would violate constraints
under the new assignment. Successor states which have empty domains or violated constraints are removed
from the list of successors.

17

Q8. [19 pts] Game Trees: Friendly Ghost
Consider a two-player game between Pacman and a ghost in which both agents alternate moves. As usual, Pacman
is a maximizer agent whose goal is to win by maximizing his own utility. Unlike the usual adversarial ghost, she is
friendly and helps Pacman by maximizing his utility. Pacman is unaware of this and acts as usual (i.e. as if she is
playing against him). She knows that Pacman is misinformed and acts accordingly.

(a) [7 pts] In the minimax algorithm, the value of each node is determined by the game subtree hanging from that
node. For this version, we instead define a value pair (u, v) for each node:

• u is the value of the subtree as determined by Pacman, who acts to win while assuming that the ghost is
a minimizer agent, and

• v is the value of the subtree as determined by the ghost, who acts to help Pacman win while knowing
Pacman’s strategy.

For example, in the subtree below with values (4, 6), Pacman believes the ghost would choose the left action
which has a value of 4, but in fact the ghost chooses the right action which has a value of 6, since that is better
for Pacman.

For the terminal states we set u = v = Utility(State).

Fill in the remaining (u, v) values in the modified minimax tree below, in which the ghost is the root. The
ghost nodes are upside down pentagons () and Pacman’s nodes are rightside up pentagons ().

(2, 8)

(2, 6)

(2, 6)

(2, 2) (4, 6)

(4, 6)

(4, 4) (6, 6)

(1, 7)

(1, 1) (7, 7)

(1, 5)

(1, 1) (3, 5)

(0, 6)

(6, 6) (0, 0)

(3, 5)

(3, 3) (5, 5)

(4, 8)

(3, 9)

(3, 3) (9, 9)

(4, 8)

(8, 8) (4, 4)

The u value of a Pacman nodes is the maximum of the u values of the it’s children nodes since Pacman believes
that the values of the nodes are given by u. The v value of Pacman’s nodes is the v value from the child node
that attains the maximum u value since, during Pacman’s turn, he determines which action that is taken.

The u value of the ghost nodes is the minimum of the u values of the children nodes since Pacman believes
the ghost would choose the action that minimizes his utility. The v value of the ghost nodes is the maximum
of the v values of the immediate children nodes since, during her turn, she chooses the action that maximizes
Pacman’s utility.

The value of this game, where the goal is to act optimally given the limited information, is 8. Notice that the
u values are minimax values since Pacman believes he is playing a minimax game.

(b) [3 pts] In the game tree above, put an ‘X’ on the branches that can be pruned and do not need to be explored
when the ghost computes the value of the tree. Assume that the children of a node are visited in left-to-right
order and that you should not prune on equality. Explicitly write down “Not possible” below if no branches

18

can be pruned, in which case any ‘X’ marks above will be ignored.
Two branches can be pruned and they are marked on the tree above.

Branches from a Pacman node to its immediate children, can never be pruned since the v value from one of the
children nodes might be needed by the ghost node above in the tree, even if the u value is no longer needed.
For instance, if the game was simply minimax, the branch between the nodes with values (4, 8) would have
been pruned. However, notice that in the modified game, the value 8 needed to be passed up the tree.

On the other hand, branches from a ghost node to its immediate children can be pruned, if we can rule out
the possibility that in the previous turn Pacman would pick the action leading to this node. For instance, the
branch above the leave with values (7, 7) can be pruned since Pacman’s best u value on path to root is 4 by
the time this branch is reached, but the ghost node already explored a subtree with a u value of 1.

(c) [1 pt] What would the value of the game tree be if instead Pacman knew that the ghost is friendly?

Value (i.e. a single number) at the root of the game tree is 9

In this game where Pacman knows that the ghost is friendly, both players are maximizer players, so the value
of the game tree is the maximum of all the leaves.

19

(d) [4 pts] Complete the algorithm below, which is a modification of the minimax algorithm, to work in the original
setting where the ghost is friendly unbeknownst to Pacman. (No pruning in this subquestion)

function Value(state)
if state is leaf then

(u, v)← (Utility(state), Utility(state))
return (u, v)

end if
if state is Ghost-Node then

return Ghost-Value(state)
else

return Pacman-Value(state)
end if

end function

function Ghost-Value(state)
(u, v)← (+∞,−∞)
for successor in Successors(state) do

(u′, v′)← Value(successor)

(i)

(ii)

(u, v)← (ū, v̄)
end for
return (u, v)

end function

function Pacman-Value(state)
(u, v)← (−∞,+∞)
for successor in Successors(state) do

(u′, v′)← Value(successor)

(iii)

(iv)

(u, v)← (ū, v̄)
end for
return (u, v)

end function

Complete the pseudocode by choosing the option that fills in each blank above. The code blocks A1–A8 update
ū and the code blocks B1–B8 update v̄. If any of the code blocks are not needed, the correct answer for that
question must mark the option ‘None of these code blocks are needed’.

A1 if u′ < u then
ū← u′

end if

A2 if u′ < v then
ū← u′

end if

A3 if v′ < u then
ū← u′

end if

A4 if v′ < v then
ū← u′

end if

A5 if u′ > u then
ū← u′

end if

A6 if u′ > v then
ū← u′

end if

A7 if v′ > u then
ū← u′

end if

A8 if v′ > v then
ū← u′

end if

B1 if u′ < u then
v̄ ← v′

end if

B2 if u′ < v then
v̄ ← v′

end if

B3 if v′ < u then
v̄ ← v′

end if

B4 if v′ < v then
v̄ ← v′

end if

B5 if u′ > u then
v̄ ← v′

end if

B6 if u′ > v then
v̄ ← v′

end if

B7 if v′ > u then
v̄ ← v′

end if

B8 if v′ > v then
v̄ ← v′

end if

(i) [1 pt] A1 # A2 # A3 # A4

A5 # A6 # A7 # A8 # None of these code blocks are needed

(ii) [1 pt] # B1 # B2 # B3 # B4

B5 # B6 # B7 B8 # None of these code blocks are needed

(iii) [1 pt] # A1 # A2 # A3 # A4

 A5 # A6 # A7 # A8 # None of these code blocks are needed

(iv) [1 pt] # B1 # B2 # B3 # B4

 B5 # B6 # B7 # B8 # None of these code blocks are needed

20

As stated in part (a), the u and v values for the ghost node is (i) the minimum of the u values and (ii)
the maximum of the v values of the children nodes, while the u and v values for Pacman’s node is (iii) the
maximum of the u values and (iv) the v value that attains the maximum u value among the u values of the
children nodes.

21

(e) [4 pts] Complete the algorithm below, which is a modification of the alpha-beta pruning algorithm, to work in
the original setting where the ghost is friendly unbeknownst to Pacman.
We want to compute Value(Root Node, α = −∞, β = +∞). You should not prune on equality.
Hint: you might not need to use α or β, or none of them (e.g. no pruning is possible).

function Value(state, α, β)
if state is leaf then

(u, v)← (Utility(state), Utility(state))
return (u, v)

end if
if state is Ghost-Node then

return Ghost-Value(state, α, β)
else

return Pacman-Value(state, α, β)
end if

end function

function Ghost-Value(state, α, β)
(u, v)← (+∞,−∞)
for successor in Successors(state) do

(u′, v′)← Value(successor, α, β)

... # same as before
(u, v)← (ū, v̄)

(i)

(ii)

end for
return (u, v)

end function

function Pacman-Value(state, α, β)
(u, v)← (−∞,+∞)
for successor in Successors(state) do

(u′, v′)← Value(successor, α, β)

... # same as before
(u, v)← (ū, v̄)

(iii)

(iv)

end for
return (u, v)

end function

Complete the pseudocode by choosing the option that fills in each blank above. The code blocks C1–C8 prune
the search and the code blocks D1–D8 update α and β. If any of the code blocks are not needed, the correct
answer for that question must mark the option ‘None of these code blocks are needed’.

C1 if u < α then
return (u, v)

end if

C2 if v < α then
return (u, v)

end if

C3 if u < β then
return (u, v)

end if

C4 if v < β then
return (u, v)

end if

C5 if u > α then
return (u, v)

end if

C6 if v > α then
return (u, v)

end if

C7 if u > β then
return (u, v)

end if

C8 if v > β then
return (u, v)

end if

D1 α← min(α, u) D2 α← min(α, v) D3 β ← min(β, u) D4 β ← min(β, v)

D5 α← max(α, u) D6 α← max(α, v) D7 β ← max(β, u) D8 β ← max(β, v)

(i) [1 pt] C1 # C2 # C3 # C4

C5 # C6 # C7 # C8 # None of these code blocks are needed

(ii) [1 pt] # D1 # D2 # D3 # D4

D5 # D6 # D7 # D8 None of these code blocks are needed

(iii) [1 pt] # C1 # C2 # C3 # C4

C5 # C6 # C7 # C8 None of these code blocks are needed

(iv) [1 pt] # D1 # D2 # D3 # D4

 D5 # D6 # D7 # D8 # None of these code blocks are needed

22

As stated in part (b), it is possible to prune based on Pacman’s best option on path to root just as in minimax
((i) and (iv)), but it is not possible to prune based on the ghost’s best option on path to root ((ii) and (iii)).

23

