Mechanics of Materials (CE130) Section I

The Second Mid-term Examination

Problem 1.

(a) Find the reaction forces at both ends;

(b) Draw shear & moment diagrams for the following beams (see: Fig. 1 (a)(b)) and label the peak values for the corresponding maximum shear and maximum moment. (30 points (15 each))

Figure 1: Beams with external loads

Problem 2.

An I-beam shown in Fig. 2 is made of three planks, which are connected by nails. Suppose that each nail can sustain a shear force 1000N. Let t=50mm and b=500mm. Suppose that the beam cross section is subjected to a shear force V=10kN. Find the maximum nail spacing.

$$\tau = \frac{VQ}{I_z t}, \quad q = \frac{S}{\Delta} = \frac{VQ}{I_z}$$

$$Q = \int_A y dA = A\bar{y}$$

$$I_z = I_{zc} + d_z^2 A \quad \text{parallel axis theorem}$$

$$I_{zc} = \frac{bh^3}{12} \quad \text{for rectangular cross section.}$$
(1)

(20 points)

Figure 2: The I-beam.

Figure 3: A T beam: (a) the geometry of the cross-section; (b) the stress-strain relation.

Figure 4: A beam with a concentrated moment.

Problem 3.

A T-beam shown in Fig. 3 (a) with b = 50mm and h = 200mm, which is made of linear elastic-perfectly plastic material with $\sigma_y^T = |\sigma_y^C| = 100 \ MP_a$ (shown in Fig 4 (b)). Find:

- 1. The position of the elastic bending neutral axis, or the centroidal axis?
- 2. Find I_z ?;
- 3. Which surface yields first? and Find the yield moment, M_Y ?
- 4. Find the neutral axis position for plastic bending (no elastic core)?
- 5. Find the ultimate bending moment, M_{ult} ?

(30 points)

Problem 4.

Consider the cantilever beam with span L = a + b. The beam is subjected with a concentrated moment at the position x = a in counterclock direction. The flexural rigidity of the beam is EI = const.. (Recommend using the singularity function method).

$$EI\frac{d^4y(x)}{dx^4} = -w(x) \tag{2}$$

(20 points)

(1) What is the w(x)?

(a)
$$w(x) = M < x - a > 0$$
?

(b)
$$w(x) = M < x - a >_*^{-1}$$

(c)
$$w(x) = M < x - a >_{*}^{-2}$$
?

(b)
$$w(x) = M < x - a >_{*}^{-1}$$
?
(c) $w(x) = M < x - a >_{*}^{-2}$?
(d) $w(x) = -M < x - a >_{*}^{-2}$?

(e)
$$w(x) = -M < x - a > 1$$
?

(2)

- 1. State the four boundary conditions;
- 2. Find the beam deflection y(x);
- 3. Find the beam deflection at x = 0, i.e. y(0).

Draw moment and shear diagrams.