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1. (Total 15 points) Consider the unsteady, incompressible, 2D flow described by the velocity field

u = y2 + t

v = x2

(a) Find the equation, x(y) or y(x), for the streamline passing through point (0, 0) at time t = 0.

(b) Find the equations, x(t) and y(t), describing a pathline originating at point (0, 0) at time t = 0.

(c) Calculate the acceleration of a fluid particle at point (0, 0) at time t = 0.

(a) Streamlines at t = 0 are given by relation

dx

dy
=
u

v
=
y2

x2

Integrating, ∫ x

xo

x2dx =

∫ y

yo

y2dy

Carrying out the integral for (x0, y0) = (0, 0) gives

x = y . (5 point)

(b) Pathline:
NOTE: The equations are nonlinearly coupled, making a closed form solution difficult, thus
solutions should be left in integral form (if you noted this you received full credit). Alterna-
tively, if you ignored this coupling in performing the integrals (as shown below), you also still
received full credit.

For the x-coordinate
dx

dt
= u = y2 + t

Rewriting, ∫ x

xo

dx =

∫ t

to

(y2 + t)dt

and carrying out the integral (ignoring y’s dependence on t) for x0 = 0 and t0 = 0 we get

x = y2t+
t2

2
. (2.5 point)

For the y-coordinate
dy

dt
= v = x2

Rewriting, ∫ y

yo

dy =

∫ t

to

x2dt

and carrying out the integral (ignoring x’s dependence on t) for y0 = 0 and t0 = 0 we get

y = x2t . (2.5 point)
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(c) Acceleration:

Dv

Dt
=
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

ax =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 1 + x22y

ay =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= (y2 + t)(2x)

At (x, y) = (0, 0) and t = 0, we get

a = (1, 0) . (5 point)
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2. (Total 20 points) A sluice gate of width b into the page controls the flow of water by raising
or lowering a vertical plate. The water exerts a force F on the gate. Let ρ be the water density
and other variables be as shown in the diagram. Disregarding the wall shear forces at the solid
surfaces, and assuming steady, uniform flow:

(a) Solve for the horizontal component of the force, Fx, the water imposes on the gate. Express
answer in terms of (ρ, y1, y2, b, g and V1)

(b) Based on the expression you derived above, derive an expression for y2 when Fx is a maximum.
Assume V1 and y1 remain constant.

Force Fx

(a) Define control volume as water only. Forces Fp1 and Fp2 due to pressures at sections (1) and
(2) are given by

Fp1 = Pc1A1 = ρg
y1
2

(y1b) (2 point)

Fp2 = Pc2A2 = ρg
y2
2

(y2b) (2 point)

The momentum equation in the x direction gives

−Fx + F1p − Fp2 = −(ρA1V1)V1 + (ρA2V2)V2. (5 point)

Also from continuity V1y1 = V2y2. (1 point) Hence

Fx = ρby1V
2
1

(
1 − y1

y2

)
+

1

2
ρgb

(
y21 − y22

)
. (5 point)

This is the force of the gate on the water. The force on the gate is −Fx.

(b) Fx is maximum when
∂Fx

∂y2
= 0 =

ρby21V
2
1

y22
− ρgby2 (5 point)
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3. (Total 20 points) A vehicle of mass M scoops stationary water of density ρ with depth h and
width b into the page, creating an upward jet with angle θ. Assume the incoming and outgoing
stream of water on the scoop have the same area. Neglect air drag, wheel friction and gravity
effects.

(a) Determine the thrust T to maintain a constant acceleration a in terms of the variables given.

(b) Assume that the thrust is removed (T = 0), hence the vehicle decelerates from initial velocity
V0 at t = 0. Based on the expression you derived above, find the expression for the velocity
V (t) as a function of time (note: a = dV

dt
).

Thrust, T
Velocity, V

Mass, M

θ

h
water

(a) Choose control volume moving with the vehicle (1 point). Since the absolute fluid velocity is
zero, the relative velocity entering the control volume is W = 0 − (−V ) (1 point) hence the
mass flux passing the control surface is ṁ = ρhbV (2 point). Due to the conservation of mass,
the exit velocity is also V (1 point). The momentum equation in the x direction is

−T −Ma = −ṁV + ṁV cos(θ) (6 point). (1)

Hence
T = ρhbV 2(1 − cos(θ)) −Ma. (1 point)

(b) Setting T = 0 in equation (1) and a = V̇ yields

MV̇ = ρbhV 2(1 − cos(θ)). (2 point)

Note, we have flipped the sign on Ma since vehicle is decelerating (1 point). Let the constant
C = ρbh(1 − cos(θ))/M . Separating the equation∫ V

V0

dV

V 2
=

∫ t

0

Cdt. (2 point)

Integration and simplifying for V (t) yields

V (t) =
V0

1 − V0Ct
. (3 point)
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Summary of Equations:

Chapter 4:
Some of the important equations in this chapter are:

Equation for streamlines (4.1)

Acceleration (4.3)

Material derivative (4.6)

Streamwise and normal components 
of acceleration (4.7)

Reynolds transport theorem (restricted form) (4.15)

Reynolds transport theorem (general form) (4.19)

Relative and absolute velocities (4.22)
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Problems 179

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al.
(© 2009 John Wiley and Sons, Inc.).

Review Problems

Problems
Note: Unless otherwise indicated, use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an (*) are intended to be solved with the
aid of a programmable calculator or a computer. Problems
designated with a (†) are “open-ended” problems and require
critical thinking in that to work them one must make various
assumptions and provide the necessary data. There is not a
unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 4.1 The Velocity Field
4.1 Obtain a photograph/image that shows a flowing fluid. Print
this photo and write a brief paragraph that describes the flow in
terms of an Eulerian description; a Lagrangian description.
4.2 Obtain a photograph/image of a situation in which the
unsteadiness of the flow is important. Print this photo and write a
brief paragraph that describes the situation involved.

4.3 Obtain a photograph/image of a situation in which a fluid is
flowing. Print this photo and draw in some lines to represent how
you think some streamlines may look. Write a brief paragraph to
describe the acceleration of a fluid particle as it flows along one
of these streamlines.

4.4 The x- and y-components of a velocity field are given by
x and y, where V0 and are constants.

Make a sketch of the velocity field in the first quadrant
by drawing arrows representing the fluid velocity

at representative locations.

4.5 A two-dimensional velocity field is given by and
Determine the equation of the streamline that passes

through the origin. On a graph, plot this streamline.

4.6 The velocity field of a flow is given by 
where x, y, and z are in feet. De-

termine the fluid speed at the origin and on the x
axis 

4.7 A flow can be visualized by plotting the velocity field as
velocity vectors at representative locations in the flow as shown in
Video V4.2 and Fig. E4.1. Consider the velocity field given in 

1y ! z ! 02. 1x ! y ! z ! 0215z # 32 î " 1x " 42 ĵ " 4yk̂ ft$s,
V !

v ! 1.
u ! 1 " y

1x 7 0, y 7 02 !v ! #1V0 $!2u ! #1V0 $!2
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Chapter 5:

244 Chapter 5 ■ Finite Control Volume Analysis

In this chapter the flow of a fluid is analyzed by using important principles including conservation of
mass, Newton’s second law of motion, and the first and second laws of thermodynamics as applied to
control volumes. The Reynolds transport theorem is used to convert basic system-orientated laws
into corresponding control volume formulations.

The continuity equation, a statement of the fact that mass is conserved, is obtained in a
form that can be applied to any flow—steady or unsteady, incompressible or compressible. Sim-
plified forms of the continuity equation enable tracking of fluid everywhere in a control volume,
where it enters, where it leaves, and within. Mass or volume flowrates of fluid entering or leav-
ing a control volume and rate of accumulation or depletion of fluid within a control volume can
be estimated.

The linear momentum equation, a form of Newton’s second law of motion applicable to flow
of fluid through a control volume, is obtained and used to solve flow problems. Net force results
from or causes changes in linear momentum (velocity magnitude and/or direction) of fluid flow-
ing through a control volume. Work and power associated with force can be involved.

The moment-of-momentum equation, which involves the relationship between torque and
changes in angular momentum, is obtained and used to solve flow problems dealing with turbines
(energy extracted from a fluid) and pumps (energy supplied to a fluid).

The steady-state energy equation, obtained from the first law of thermodynamics (conser-
vation of energy), is written in several forms. The first (Eq. 5.69) involves power terms. The sec-
ond form (Eq. 5.82 or 5.84) is termed the mechanical energy equation or the extended Bernoulli
equation. It consists of the Bernoulli equation with extra terms that account for energy losses due
to friction in the flow, as well as terms accounting for the work of pumps or turbines in the flow.

The following checklist provides a study guide for this chapter. When your study of the en-
tire chapter and end-of-chapter exercises has been completed you should be able to

write out meanings of the terms listed here in the margin and understand each of the related
concepts. These terms are particularly important and are set in italic, bold, and color type
in the text.
select an appropriate control volume for a given problem and draw an accurately labeled con-
trol volume diagram.
use the continuity equation and a control volume to solve problems involving mass or vol-
ume flowrate.
use the linear momentum equation and a control volume, in conjunction with the continuity
equation as necessary, to solve problems involving forces related to linear momentum change.
use the moment-of-momentum equation to solve problems involving torque and related work
and power due to angular momentum change.
use the energy equation, in one of its appropriate forms, to solve problems involving losses
due to friction (head loss) and energy input by pumps or extraction by turbines.
use the kinetic energy coefficient in the energy equation to account for nonuniform flows.

Some of the important equations in this chapter are given below.

Conservation of mass (5.5)

Mass flowrate (5.6)

Average velocity (5.7)

Steady flow mass conservation (5.9)

Moving control volume 
mass conservation (5.16)

0
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5.5 Chapter Summary and Study Guide

conservation of mass
continuity equation
mass flowrate
linear momentum

equation
moment-of-

momentum
equation

shaft power
shaft torque
first law of 

thermodynamics
heat transfer rate
energy equation
loss
shaft work head
head loss
kinetic energy

coefficient
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Problems 245

Go to Appendix G for a set of review problems with answers. De-
tailed solutions can be found in Student Solution Manual and Study

Guide for Fundamentals of Fluid Mechanics, by Munson et al. (©
2009 John Wiley and Sons, Inc.).

Review Problems

Note: Unless otherwise indicated, use the values of fluid
properties found in the tables on the inside of the front cover.
Problems designated with an (*) are intended to be solved
with the aid of a programmable calculator or a computer.
Problems designated with a (†) are “open-ended” problems
and require critical thinking in that to work them one must
make various assumptions and provide the necessary data.
There is not a unique answer to these problems.

Answers to the even-numbered problems are listed at the
end of the book. Access to the videos that accompany problems
can be obtained through the book’s web site, www.wiley.com/
college/munson. The lab-type problems can also be accessed on
this web site.

Section 5.1.1 Derivation of the Continuity Equation
5.1 Explain why the mass of the contents of a system is constant
with time.

5.2 Explain how the mass of the contents of a control volume can
vary with time or not.

5.3 Explain the concept of a coincident control volume and system
and why it is useful.

5.4 Obtain a photograph/image of a situation for which the con-
servation of mass law is important. Briefly describe the situation
and its relevance.

Problems

Deforming control volume 
mass conservation (5.17)

Force related to change in 
linear momentum                    (5.22)

Moving control volume force related            (5.29)to change in linear momentum 

Vector addition of absolute and relative velocities             (5.43)

Shaft torque from force (5.45)

Shaft torque related to change in 
(5.50)moment-of-momentum (angular 

momentum)

Shaft power related to change in 
(5.53)moment-of-momentum (angular 

momentum)

First law of 
thermodynamics (5.64)
(Conservation of
energy)

Conservation of power (5.69)

Conservation of  
mechanical energy (5.82)
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