Math 54. Solutions to First Midterm

1. (8 points) Suppose A is a 5×3 matrix and \vec{b} is a vector in \mathbb{R}^{5} with the property that $A \vec{x}=\vec{b}$ has a unique solution. What can you say about the reduced echelon form of A ? Justify your answer.
2. (12 points) Express the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
8 & 5
\end{array}\right]
$$

as a product of elementary matrices.

2
3. (10 points) Compute the determinant

$$
\left|\begin{array}{ccccccc}
2 & 0 & 10 & 11 & 8 & 9 & 0 \\
0 & 3 & 11 & 13 & 10 & 5 & 0 \\
0 & 0 & 1 & 2 & 1 & 3 & 0 \\
0 & 0 & 1 & 3 & 2 & 4 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 3 & 2 & 0 \\
0 & 0 & 9 & 4 & 8 & 7 & 2
\end{array}\right| .
$$

You may lose points if you need more computation than is necessary.
4. (10 points) Let

$$
W=\left\{\vec{p} \in \mathbb{P}_{3}: \vec{p}(1)=\vec{p}^{\prime}(2)+\vec{p}^{\prime \prime}(3)\right\} .
$$

Is W a subspace of \mathbb{P}_{3} ? Explain.
5. (10 points) Use coordinate vectors to test whether the following set of polynomials spans \mathbb{P}_{2}. Justify your conclusion.

$$
1-t+2 t^{2}, 2+5 t^{2}, t+t^{2}, 3-3 t+8 t^{2}
$$

