Berkeley Physics H7B Fall 2015

Dr. Winoto - Midterm 1 Examination
Wednesday, September 30th, 2015

Instruction for the examination (please read carefully):

- Topic: Thermodynamics
- There are 4 problems total (NOT in any order of length and difficulty, they vary, but all of them are worth the same), do them in any order you prefer.
- Total points for the exam = 100 points for a perfect score
- You have exactly 125 minutes to complete the test
- Please outline and explain in details all your physical and mathematical reasonings in a clear, concise, step-by-step and logical manner.

1. (25 points): Carnot Engine:

An infinite heat reservoir M 1 is at a constant temperature T_{H}. A finite system or reservoir M 2 with a constant heat capacity C_{2}, is initially at temperatures $T_{2} . T_{H}$ is greater than T_{2}.
(a). Suppose we bring M2 into thermal contact with M1. Eventually, they reach a thermal equilibrium. Please calculate the entropy change of M 2 , the entropy change of M 1 , and the total entropy change. (ONLY if you have time, show explicitly that the total entropy change is strictly greater than zero).
Now, suppose INSTEAD of (a):
we use M 1 and M 2 as a high temperature reservoir and a low temperature reservoir, respectively, to run a Carnot engine. Or in other words, we use the Carnot engine to transfer heat from M1 into M2 until they reach a thermal equilibrium, after an infinite number of infinitesimal Carnot cycles and the engine comes to rest eventually.
(b). (12pts) Calculate the total final amount of work W done by the Carnot engine.
(c). Calculate explicitly: the entropy change for M1, the entropy change for M2, and the entropy change for the whole system (M1 + M2 + Carnot engine). And justify your answer for the entropy change for the whole system.
2. (25 points): Isothermal Atmosphere:

Consider a vertical, very long and closed column of mono-atomic ideal gas, with one end of the column at ground level of the surface of the earth. The number of gas particle is N, and the mass of each particle is m. The whole column is to be considered at thermal equilibrium at a constant and homogeneous temperature T. The cross-section area of the column is A, and the length is L, where L is very large, approaching ∞, but at the same time we will also assume that the gravitational acceleration g is constant through out the column (downward, and equal to $9.8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ but you won't need this number). And in case, you don't remember from Physics 7A, the potential energy of a particle at height z in this constant gravitational field is given by $m g z$.
(a). Using the equipartition theorem, please calculate the average kinetic energy of the gas.
(b). (10pts) Using the Boltzmann distribution, calculate the average potential energy of the gas.
(c). Calculate the heat capacity at constant volume C_{V} for the gas.
(d). Please calculate the pressure of the gas at $z=\infty$ and at $z=0$.

3. (25 points): Adiabatic Process (see Figure \#3):

A mono-atomic ideal gas of N particles is at a state A with a pressure of p_{0}, volume V_{o}, and temperature T_{o}. The gas undergoes an adiabatic expansion to a volume of $2 V_{o}$ (state B).
(a). Please calculate the temperature of the gas at state B, T_{B}.
(b). Calculate the entropy change $\Delta S(A->B)$ for this process.

Now, suppose instead of the adiabatic expansion, the process, from A to B, follows the following pathway (as shown in the figure):

- first, an isovolumetric reduction in temperature from T_{o} to $T_{B}(A->C)$
- second, an isothermal expansion at temperature T_{B} from V_{o} to $2 V_{o}$ (C-> B)
(c). Calculate the heat transfers into the gas from $A->C$ and also from $C->B$.
(d). (10pts) Calculate the entropy change of the gas from $A->C$, the entropy change from C-> B, and also the total entropy change from $A->C->B$. Since entropy is a state function, please show explicitly that your answer for $\Delta \mathrm{S}(A->C->B)$ is equal to the answer from part (b).

4. (25 points): Simple Harmonic Oscillation:

Consider a 1D (along the x-axis) mono-atomic ideal gas of N particles of mass m in a simple harmonic potential energy given by $\frac{1}{2} k_{s} x^{2}$, where $-\infty<\mathrm{x}<\infty$ and k_{s} is the spring constant. The ideal gas is at a contant temperature T.
(a). Using the equipartition theorem, please calculate the average kinetic energy of the gas.
(b). (10pts) Using the Boltzmann distribution, calculate the average potential energy of the gas.
(c). (10pts) Calculate the heat capacity at constant volume C_{V} for the gas.

$$
\int_{-\infty}^{\infty} x^{2} \mathrm{e}^{-\alpha x^{2}} \mathrm{~d} x=\frac{1}{2} \sqrt{\frac{\pi}{\alpha^{3}}} .
$$

Chis trick can be repeated with equal ease. Differentiat ;ives

$$
\int_{-\infty}^{\infty} x^{4} \mathrm{e}^{-\alpha x^{2}} \mathrm{~d} x=\frac{3}{4} \sqrt{\frac{\pi}{\alpha^{5}}} .
$$

Cherefore we have a way of generating the integrals betw and ∞ of $x^{2 n} \mathrm{e}^{-\alpha x^{2}}$, where $n \geq 0$ is an integer. ${ }^{1}$ Becaı unctions are even, the integrals of the same functions b ind ∞ are just half of these results:

$$
\begin{aligned}
\int_{0}^{\infty} \mathrm{e}^{-\alpha x^{2}} \mathrm{~d} x & =\frac{1}{2} \sqrt{\frac{\pi}{\alpha}}, \\
\int_{0}^{\infty} x^{2} \mathrm{e}^{-\alpha x^{2}} \mathrm{~d} x & =\frac{1}{4} \sqrt{\frac{\pi}{\alpha^{3}}}, \\
\int_{0}^{\infty} x^{4} \mathrm{e}^{-\alpha x^{2}} \mathrm{~d} x & =\frac{3}{8} \sqrt{\frac{\pi}{\alpha^{5}}} .
\end{aligned}
$$

$$
\pi=\int_{0}^{0} x^{2 n e x}+e^{2 x} d x
$$

