
Math 54. Solutions to Second Midterm

1. (22 points) Let A =

 1 1 1
1 1 1
1 1 1

 .

(a). Verify that 3 is an eigenvalue of A , and find a basis for its eigenspace.

We have that 3 is an eigenvalue because

det(A− 3I) =

∣∣∣∣∣∣
−2 1 1
1 −2 1
1 1 −2

∣∣∣∣∣∣ = −8 + 1 + 1− (−2)− (−2)− (−2) = 0 .

The eigenspace is the null space of A− 3I , so we row-reduce this matrix:−2 1 1
1 −2 1
1 1 −2

 ∼
 1 −2 1
−2 1 1
1 1 −2

 ∼
 1 −2 1

0 −3 3
0 3 −3

 ∼
 1 −2 1

0 −3 3
0 0 0


∼

 1 −2 1
0 1 −1
0 0 0

 ∼
 1 0 −1

0 1 −1
0 0 0

 .

The solutions of (A− 3I)~x = ~0 are therefore all vectors with x1 = x2 = x3 , so a basis

for the eigenspace is

 1
1
1

 .

(b). Find another eigenvalue of A , and find a basis for its eigenspace. [Hint:
There’s an easy way to answer this part.]

It is easy to see that A is singular, so it has 0 as an eigenvalue. Row reducing it
gives

A =

 1 1 1
1 1 1
1 1 1

 ∼
 1 1 1

0 0 0
0 0 0

 ,

so the solutions of A~x = ~0 are x1 = −x2 − x3 with x2 and x3 free; writing this in
vector parametrized form gives

x2

−1
1
0

+ x3

−1
0
1

 ,

so a basis for the eigenspace is

−1
1
0

 ,

−1
0
1

 .
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(c). Is A diagonalizable? Explain.

Yes. It has three linearly independent eigenvectors. Or, the dimensions of the
eigenspaces add up to three (Theorem 7b on page 255).

(Or, it is a real symmetric matrix, so it is diagonalizable.)

2. (20 points) Let W = Span


 1

1
0

 ,

 1
−1
1

 and ~y =

 1
1
3

 .

(a). Find ŷ = projW ~y .

Note that the two vectors ~v1 =

 1
1
0

 and ~v2 =

 1
−1
1

 are orthogonal, so

projW ~y =
~y · ~v1
~v1 · ~v1

~v1 +
~y · ~v2
~v2 · ~v2

~v2 =
2

2

 1
1
0

+
3

3

 1
−1
1

 =

 2
0
1

 .

(b). Find the smallest value of ‖~y − ~v‖ for ~v ∈W .

That smallest value is when ~v = ŷ , so it is

‖~y − ŷ‖ =

∥∥∥∥∥∥
−1

1
2

∥∥∥∥∥∥ =
√

6 .

3. (18 points) Let ~x1 , ~x2 , and ~x3 be linearly dependent vectors in Rn for some n ≥ 3 .
Assume furthermore that ~x1 and ~x2 are linearly independent, but that
~x3 ∈ Span{~x1, ~x2} .

Normally, one would not apply the Gram-Schmidt process to ~x1 , ~x2 , ~x3 , since
they are not a basis for a subspace of Rn .

However, what would happen if one did apply the Gram-Schmidt process to ~x1 ,
~x2 , ~x3 ? Will the process fail? If so, how? Explain.

It may (or may not) be helpful to recall the formulas used in Gram-Schmidt:

~v1 = ~x1

~v2 = ~x2 −
~x2 · ~v1
~v1 · ~v1

~v1

~v3 = ~x3 −
~x3 · ~v1
~v1 · ~v1

~v1 −
~x3 · ~v2
~v2 · ~v2

~v2

Let W = Span{~x1, ~x2} . Then also W = Span{~v1, ~v2} , and so

~v3 = ~x3 − projW ~x3 = ~0 ,

because we are already given that ~x3 is in W .
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4. (15 points) Determine (for the Method of Undetermined Coefficients) the form of a
particular solution to the differential equation

y′′ + 4y = 8t cos 2t + sin 2t + cos t + tet .

(Do not solve for the coefficients.)

The characteristic equation of the associated homogeneous equation is r2 + 4 ,
which has roots ±2i . Therefore the terms involving cos 2t and sin 2t need to be
multiplied by t . So, the form of the trial solution is

t(c1t + c2) cos 2t + t(c3t + c4) sin 2t + c5 cos t + c6 sin t + (c7t + c8)et .

5. (25 points) (a). Find a general solution to

y′′′′ + 2y′′ + y = 0 .

The characteristic polynomial is r4 + 2r2 + 1 = (r2 + 1)2 . This has roots ±i ; each
is a double root.

Therefore a general solution is

c1 cos t + c2 sin t + c3t cos t + c4t sin t .

(b). Express the differential equation y′′′′ + 2y′′ + y = 0 in matrix notation.

Let x1 = y , x2 = y′ , x3 = y′′ , and x4 = y′′′ . Then:

x′
1 = y′ = x2 ;

x′
2 = y′′ = x3 ;

x′
3 = y′′′ = x4 ;

x′
4 = y′′′′ = −2y′′ − y = −2x3 − x1 .

Therefore the equation in matrix form is
x1

x2

x3

x4


′

=


0 1 0 0
0 0 1 0
0 0 0 1
−1 0 −2 0



x1

x2

x3

x4

 .

(c). Choose one solution from your answer in part (a), and express it as a solution
to the system of linear equations you found in part (b).

If we choose y = cos t , then ~x =


y
y′

y′′

y′′′

 =


cos t
− sin t
− cos t
sin t

 .


