## Math 54. Solutions to Second Midterm

1. (22 points) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(a). Verify that 3 is an eigenvalue of $A$, and find a basis for its eigenspace.

We have that 3 is an eigenvalue because

$$
\operatorname{det}(A-3 I)=\left|\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right|=-8+1+1-(-2)-(-2)-(-2)=0
$$

The eigenspace is the null space of $A-3 I$, so we row-reduce this matrix:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right] } & \sim\left[\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 1 & 1 \\
1 & 1 & -2
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The solutions of $(A-3 I) \vec{x}=\overrightarrow{0}$ are therefore all vectors with $x_{1}=x_{2}=x_{3}$, so a basis for the eigenspace is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(b). Find another eigenvalue of $A$, and find a basis for its eigenspace. [Hint: There's an easy way to answer this part.]

It is easy to see that $A$ is singular, so it has 0 as an eigenvalue. Row reducing it gives

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],
$$

so the solutions of $A \vec{x}=\overrightarrow{0}$ are $x_{1}=-x_{2}-x_{3}$ with $x_{2}$ and $x_{3}$ free; writing this in vector parametrized form gives

$$
x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],
$$

so a basis for the eigenspace is $\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1 \\ 1\end{array}\right]$.
(c). Is $A$ diagonalizable? Explain.

Yes. It has three linearly independent eigenvectors. Or, the dimensions of the eigenspaces add up to three (Theorem 7 b on page 255).
(Or, it is a real symmetric matrix, so it is diagonalizable.)
2. (20 points) Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right\}$ and $\vec{y}=\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$.
(a). Find $\widehat{y}=\operatorname{proj}_{W} \vec{y}$.

Note that the two vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$ are orthogonal, so

$$
\operatorname{proj}_{W} \vec{y}=\frac{\vec{y} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{y} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}=\frac{2}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{3}{3}\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right] .
$$

(b). Find the smallest value of $\|\vec{y}-\vec{v}\|$ for $\vec{v} \in W$.

That smallest value is when $\vec{v}=\widehat{y}$, so it is

$$
\|\vec{y}-\widehat{y}\|=\left\|\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right]\right\|=\sqrt{6} .
$$

3. ( 18 points) Let $\vec{x}_{1}, \vec{x}_{2}$, and $\vec{x}_{3}$ be linearly dependent vectors in $\mathbb{R}^{n}$ for some $n \geq 3$. Assume furthermore that $\vec{x}_{1}$ and $\vec{x}_{2}$ are linearly independent, but that $\vec{x}_{3} \in \operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$.

Normally, one would not apply the Gram-Schmidt process to $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$, since they are not a basis for a subspace of $\mathbb{R}^{n}$.

However, what would happen if one did apply the Gram-Schmidt process to $\vec{x}_{1}$, $\vec{x}_{2}, \vec{x}_{3}$ ? Will the process fail? If so, how? Explain.

It may (or may not) be helpful to recall the formulas used in Gram-Schmidt:

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1} \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}
\end{aligned}
$$

Let $W=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$. Then also $W=\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$, and so

$$
\vec{v}_{3}=\vec{x}_{3}-\operatorname{proj}_{W} \vec{x}_{3}=\overrightarrow{0},
$$

because we are already given that $\vec{x}_{3}$ is in $W$.
4. (15 points) Determine (for the Method of Undetermined Coefficients) the form of a particular solution to the differential equation

$$
y^{\prime \prime}+4 y=8 t \cos 2 t+\sin 2 t+\cos t+t e^{t} .
$$

(Do not solve for the coefficients.)
The characteristic equation of the associated homogeneous equation is $r^{2}+4$, which has roots $\pm 2 i$. Therefore the terms involving $\cos 2 t$ and $\sin 2 t$ need to be multiplied by $t$. So, the form of the trial solution is

$$
t\left(c_{1} t+c_{2}\right) \cos 2 t+t\left(c_{3} t+c_{4}\right) \sin 2 t+c_{5} \cos t+c_{6} \sin t+\left(c_{7} t+c_{8}\right) e^{t}
$$

5. (25 points) (a). Find a general solution to

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0 .
$$

The characteristic polynomial is $r^{4}+2 r^{2}+1=\left(r^{2}+1\right)^{2}$. This has roots $\pm i$; each is a double root.

Therefore a general solution is

$$
c_{1} \cos t+c_{2} \sin t+c_{3} t \cos t+c_{4} t \sin t .
$$

(b). Express the differential equation $y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0$ in matrix notation.

Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}$, and $x_{4}=y^{\prime \prime \prime}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=y^{\prime}=x_{2} ; \\
& x_{2}^{\prime}=y^{\prime \prime}=x_{3} ; \\
& x_{3}^{\prime}=y^{\prime \prime \prime}=x_{4} ; \\
& x_{4}^{\prime}=y^{\prime \prime \prime \prime}=-2 y^{\prime \prime}-y=-2 x_{3}-x_{1} .
\end{aligned}
$$

Therefore the equation in matrix form is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] .
$$

(c). Choose one solution from your answer in part (a), and express it as a solution to the system of linear equations you found in part (b).

If we choose $y=\cos t$, then $\vec{x}=\left[\begin{array}{c}y \\ y^{\prime} \\ y^{\prime \prime} \\ y^{\prime \prime \prime}\end{array}\right]=\left[\begin{array}{c}\cos t \\ -\sin t \\ -\cos t \\ \sin t\end{array}\right]$.

