1. True or False. No justification needed. 15 points. 3/3/3/3/3.

Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!
(a) Disjoint events with a positive probability cannot be independent. (True or False.)

Answer: True. $0=\operatorname{Pr}[A \cap B]$ and $\operatorname{Pr}[A] \operatorname{Pr}[B]>0$.
(b) We can find events A and B with $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A]$ and $\operatorname{Pr}[B \mid A]<\operatorname{Pr}[B]$. (True or False.)

Answer: False. $\operatorname{Pr}[A \mid B]>\operatorname{Pr}[A] \Rightarrow \operatorname{Pr}[A \cap B]>\operatorname{Pr}[A] \operatorname{Pr}[B] \Rightarrow \operatorname{Pr}[B \mid A]>\operatorname{Pr}[B]$.
(c) If $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[B]$, then A and B are independent. (True or False.)

Answer: False. We need $\operatorname{Pr}[A \mid B]=\operatorname{Pr}[A]$. For instance, in the uniform probability space with $\Omega=$ $\{1,2,3,4\}$, the events $A=\{1,2,3\}$ and $B=\{3,4\}$ are such that $\operatorname{Pr}[A \mid B]=1 / 2=\operatorname{Pr}[B]$ but $\operatorname{Pr}[A]=3 / 4$.
(d) For a random variable X, it is always the case that $E\left[X^{2}-X\right] \geq-1$. (True or False) Answer: True. $X^{2}-X+1 \geq X^{2}-|X|+1 \geq X^{2}-2|X|+1=(|X|-1)^{2} \geq 0$. Hence, $E\left[X^{2}-X+1\right] \geq 0$.
(e) If $\operatorname{Pr}[A]>\operatorname{Pr}[\bar{A}]$, then $\operatorname{Pr}[A \mid B] \geq \operatorname{Pr}[\bar{A} \mid B]$. (True or False)

Answer: False. Choose $B=\bar{A}$ for a counterexample.

2. Short Answer: Probability Space. 31 points: 4/4/4/5/5/4/5

Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!

(a) You flip a biased coin (such that $\operatorname{Pr}[H]=p$) until you accumulate two H s (not necessarily consecutive). What is the probability space? That is, what is Ω and what is $\operatorname{Pr}[\omega]$ for each $\omega \in \Omega$?
Answer: $\Omega=\{1,2, \ldots\}^{2}$ where $\omega=(a, b)$ indicates that it takes a flips until the first H and then b flips until the second H, One has $\operatorname{Pr}[(a, b)]=(1-p)^{a-1} p(1-p)^{b-1} p$.
(b) Let $\Omega=\{1,2,3,4\}$ be a uniform probability space. Let also $A=\{1,2,3\}$. Produce an event B such that $\operatorname{Pr}[B]>0$ and A and B are independent.
Answer: $B=\Omega$ because then $\operatorname{Pr}[\Omega \mid A]=1=\operatorname{Pr}[\Omega]$.
(c) Let $\Omega=\{1,2,3,4\}$ be a uniform probability space. Produce three events A, B, C that are pairwise independent but not mutually independent.
Answer: $A=\{1,2\}, B=\{1,3\}, C=\{1,4\}$
(d) You are dealt two cards from a deck of 52 cards. What is the probability that the value of the first card is strictly larger than that of the second? [In this question, the values are 1 for an ace, 2 through 10 for the number cards, then 11 for a Jack, 12 for a queen, 13 for a king.]
Answer: The two cards have the same value with probability $3 / 51=1 / 17$. Thus, with probability $16 / 17$, one is strictly larger than the other. In that case, it is the first one with probability $1 / 2$. Thus, the answer is $8 / 17$.
(e) You roll a balanced 6-sided die twice. What is the probability that the total number of pips is less than 10 given that it is larger than 7 ?
Answer: If X is the total number of pips, then the values $(2,3,4,5,6,7,8,9,10,11,12)$ occur with the respective probabilities $(1,2,3,4,5,6,5,4,3,2,1) / 36$. Now,

$$
\operatorname{Pr}[X<10 \mid X>7]=\frac{\operatorname{Pr}[X=8 \text { or } 9]}{\operatorname{Pr}[X=8,9,10,11, \text { or } 12]}=(5+4) /(6+5+4+3+2+1)=\frac{3}{5} .
$$

(f) With probability $1 / 2$, one rolls a die with four equally likely outcomes $\{1,2,3,4\}$ and with probability $1 / 2$ one rolls a balanced die with six equally likely outcomes $\{1,2, \ldots, 6\}$. Given that the outcome is 4, what is the likelihood that the coin was four-sided?
Answer: $[0.5 \times(1 / 4)] /[0.5 \times(1 / 4)+0.5 \times(1 / 6)]=3 / 5$.
(g) A coin is equally likely to be fair or such that $\operatorname{Pr}[H]=0.6$. You flip the coin 10 times and get 10 heads. What is the probability that the next coin flip yields heads?
Answer: Let p be the probability that the coin is such that $\operatorname{Pr}[H]=0.6$. Bayes' Rule implies that

$$
p=\frac{(1 / 2)(0.6)^{10}}{(1 / 2)(0.6)^{10}+(1 / 2)(0.5)^{10}}=0.861 .
$$

The probability that the next flip yields heads is then $0.6 p+0.5(1-p)=0.5861$.

3. Short Answers: Random Variables and Expectation. 14 points. 3/3/4/4

Clearly indicate your correctly formatted answer: this is what is to be graded. No need to justify!
(a) Define a 'random variable' in a short sentence.

Answer: A random variable is a real-valued function of the outcome of a random experiment.
(b) Let $\Omega=\{1,2\}$ be a uniform probability space. Produce a random variable that has mean zero and variance 1 .
Answer: $X(1)=-1$ and $X(2)=1$.
(c) Let $\Omega=\{1,2,3,4\}$ be a uniform probability space. Define two random variables X and Y such that $E[X Y]=E[X] E[Y]$ even though the random variables are not independent.
Answer: Let (X, Y) take the values $\{(1,0),(0,1),(-1,0),(0,-1)\}$ with equal probabilities.
(d) You roll a die twice. Let X be the maximum of the number of pips of the two rolls. What is $E[X]$. (You may leave the answer as a sum.)
Answer: $1 \times \frac{1}{36}+2 \times \frac{3}{36}+3 \times \frac{5}{36}+4 \times \frac{7}{36}+5 \times \frac{9}{36}+6 \times \frac{11}{36}=161 / 36 \approx 4.47$.

4. Short Problems. 40 points: 5/5/5/5/5/5/5/5

Clearly indicate your answer and your derivation.
(a) Let X be a random variable with mean 1 . Show that $E\left[2+3 X+3 X^{2}\right] \geq 8$.

Answer: We note that $0 \leq \operatorname{var}[X]=E\left[X^{2}\right]-E[X]^{2}$, so that $E\left[X^{2}\right] \geq E[X]^{2}=1$.
(b) Let X be geometrically distributed with parameter p. Recall that this means that $\operatorname{Pr}[X=n]=(1-$ $p)^{n-1} p$ for $n \geq 1$. Find $E[X \mid X>n]$. Do not leave the answer as an infinite sum.
Answer: $n+\frac{1}{p}$, by the memoryless property.
(c) Roll a die n times. Let X_{n} be the average number of pips per roll. What is $\operatorname{var}\left[X_{n}\right]$? You may leave the answer as a sum.
Answer: $\frac{1}{n} \operatorname{var}\left[X_{1}\right]$ where $\operatorname{var}\left[X_{1}\right]=\frac{1}{6} \sum_{m=1}^{6} m^{2}-(3.5)^{2}=35 /(12 n)$.
(d) Let X and Y be independent with $X=G(p)$ and $Y=G(q)$. What is $\operatorname{Pr}[X \leq Y]$? Do not leave the answer as an infinite sum.

Answer:

$$
\begin{aligned}
\operatorname{Pr}[X \leq Y] & =\sum_{x=1}^{\infty} \operatorname{Pr}[X=x, Y \geq x]=\sum_{x=1}^{\infty}(1-p)^{x-1} p(1-q)^{x-1} \\
& =p \sum_{x=0}^{\infty}[(1-p)(1-q)]^{x}=\frac{p}{1-(1-p)(1-q)} \\
& =\frac{p}{p+q-p q} .
\end{aligned}
$$

(e) You roll a balanced die five times. Let X be the total number of pips you got and Y the total number of pips on the last two rolls. What is $E[X \mid Y=4]$? What is $E[Y \mid X=15]$?
Answer: $E[X \mid Y=4]=4+3 \times(3.5)=14.5$. Also, $E[Y \mid X=15]=6$, by symmetry.
(f) How many times do you have to flip a fair coin, on average, until you get two consecutive H 's? [Hint: condition on the outcome of the last flip.]
Answer: This is similar to M3 review 13(e). Let $a(S)$ the average time from the start until two consecutive H 's, $a(H)$ the average residual time given that we just got H, and $a(T)$ the average residual time given that we just got T. Then $a(S)=1+(1 / 2) a(H)+(1 / 2) a(T), a(T)=1+(1 / 2) a(T)+$ $(1 / 2) a(H), a(H)=1+(1 / 2) a(T)+(1 / 2) .0$. Solving, we get $a(S)=6$.
(g) Let $\left\{X_{n}, n \geq 1\right\}$ be independent and geometrically distributed with parameter p. Recall that $\operatorname{var}[X]=$ $(1-p) / p^{2}$. Provide an upper bound on

$$
\operatorname{Pr}\left[\left|\frac{X_{1}+\cdots+X_{n}}{n}-\frac{1}{p}\right| \geq a\right]
$$

using Chebyshev's inequality.
Answer: An upper bound is

$$
\frac{\operatorname{var}\left[X_{1}\right]}{n a^{2}}=\frac{1-p}{n p^{2} a^{2}} .
$$

(h) There are two envelopes. One contains checks with $\{1,3,5,6,7\}$ dollars. The other contains checks with $\{4,5,5,7\}$ dollars. You choose one of the two envelopes at random and pick one of the checks at random in the envelope. That check happens to be for 5 dollars. You are given the option to keep all the money in that envelope, including the check for 5 dollars, or to switch to the other envelope. What should you do?
Answer: It is intuitively clear that the 5 you got is more likely to come from the second envelope. Since the first one contains more money, you should switch.
We can confirm by Bayes' Rule. Let p be the probability that you picked the first envelope, given that you got the 5 check. By Bayes' rule,

$$
p=\frac{(1 / 2)(1 / 5)}{(1 / 2)(1 / 5)+(1 / 2)(2 / 4)}=\frac{2 / 20}{7 / 20}=\frac{2}{7} .
$$

