UNIVERSITY OF CALIFORNIA BERKELEY
Department of Civil Engineering
Summer 2015

Structural Engineering, Mechanics and Materials Professor: S. Govindjee

1. The relevant boundary conditions are $\varphi(0)=0$ and $G J \varphi^{\prime}(L)=0$.

$$
\begin{align*}
G J \varphi^{\prime \prime} & =-t_{o} H(z-a) \tag{1}\\
G J \varphi^{\prime} & =-t_{o}\langle z-a\rangle+C \tag{2}\\
G J \varphi & =-t_{o}\langle z-a\rangle^{2} / 2+C z+D \tag{3}
\end{align*}
$$

Solving for C, D gives $D=0$ and $C=t_{o}(L-a)$, to yield

$$
\begin{equation*}
\varphi(z)=\frac{t_{o}}{G J}\left[-\langle z-a\rangle^{2} / 2+(L-a) z\right] \tag{4}
\end{equation*}
$$

Evaluating at $z=a / 2$ gives:

$$
\begin{equation*}
\underline{\underline{\varphi(z)}=\frac{t_{o}}{G J}(L-a) a / 2} \tag{5}
\end{equation*}
$$

2. Note that $R(x)=P$, where P is to be determined, and the strain is homogeneous.

$$
\begin{align*}
P & =\int_{A} \sigma d A \tag{6}\\
& =\int_{A_{1}} E_{1} \varepsilon^{3} d A+\int_{A_{2}} E_{2} \varepsilon d A \tag{7}\\
& =A_{1} E_{1} \varepsilon^{3}+A_{2} E_{2} \varepsilon \tag{8}\\
& =\xlongequal{A_{1} E_{1}\left(\frac{\Delta}{L}\right)^{3}+A_{2} E_{2}\left(\frac{\Delta}{L}\right)} \tag{9}
\end{align*}
$$

where $A_{1}=\pi R_{1}^{2}$ and $A_{2}=\pi\left(R_{2}^{2}-R_{1}^{2}\right)$.
3. In the final configuration the ring is in a state of strain with

$$
\begin{equation*}
\varepsilon_{\theta \theta}=\frac{D_{1}-D_{2}}{D_{2}} \approx \frac{\sigma_{\theta \theta}}{E}-\frac{\nu}{E}(\underbrace{\sigma_{z z}}_{=0}+\underbrace{\sigma_{r r}}_{\approx 0}) \tag{10}
\end{equation*}
$$

This gives $\sigma_{\theta \theta}=E\left(D_{1}-D_{2}\right) / D_{2}$. Force balance on the ring now gives:

$$
\begin{align*}
p t D_{1} & =2 \sigma_{\theta \theta} t^{2} \tag{11}\\
p & =2 \sigma_{\theta \theta} t / D_{1} \tag{12}\\
p & =\underline{=} \begin{array}{l}
2 E t \frac{D_{1}-D_{2}}{D_{1} D_{2}}
\end{array} \tag{13}
\end{align*}
$$

