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Vetri Velan
GSI, Physics 7B
Midterm 2: Problem 1 Solution

1. Outside sphere, ~E looks like a point charge. ~E = 1
4πǫ0

Qsphere

r2
r̂

The total charge on the sphere is Qsphere = ρ 4
3πR

3

Thus, outside the sphere, ~E = ρR3

3ǫ0
r̂
r2

Rod of charge is oriented in the radial direction, with constant linear charge
density λ = Q

d
.

We split the rod into differential elements dq. By Coulomb’s Law, the force

on each element is ~F = q ~E = dq ρR3

3ǫ0
r̂
r2
. Since the rod is in the radial direction,

we can rewrite this:
d~F = ρR3

3ǫ0
λdr
r2

r̂

Integrate from R to R+ d to find the total force on the rod.
~F =

∫
d~F = ρR3λ

3ǫ0
r̂
∫ R+d

R
dr
r2

~F = ρR3λ
3ǫ0

( 1
R
−

1
R+d

)r̂ = ρR3Q
3ǫ0d

( 1
R
−

1
R+d

)r̂

Solution: ~F = ρR3Q
3ǫ0R(R+d) r̂

+4 for getting the right form of the E-field outside the sphere:
+2 for understanding the E-field is like a point charge
+2 for the correct E-field (i.e. correct distance and total charge)

+8 for setting up the integral properly:
+2 for splitting rod up into elements
+1 for correct charge of each element
+1 for correct position of each element
+2 for correct form of the integral
+1 for correct integral lower limit
+1 for correct integral upper limit

+3 for correct result
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Vetri Velan
GSI, Physics 7B
Midterm 2: Problem 2 Solution

2. The charges in the cavities are shielded, so the net effect is that it ap-
pears to an outside observer that Q1 and Q2 are at the center of the sphere.

Solution: ~E = 1

4πǫ0

Q1+Q2

r2
r̂

+3 for understanding that charges are shielded, so E = 0 everywhere
+4 for understanding that charges are ”transferred” to the surface of the con-
ductor
+4 for understanding that the total charge on the surface of the conductor acts
like a point at its center
+2 for using Coulomb’s Law (or Gauss’s Law, if used correctly)
+2 for correct answer
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Physics 7B Fall 2015 Midterm 2 - Birgeneau Solutions

Problem 3

a) By symmetry, the potential on the y-axis is zero.

b) First, assume the point is located on the positive x-axis.

V = ke

∫

dq

x0 − x
= ke

∫

d

−d

λdx

x0 − x
= kea

∫

d

−d

xdx

x0 − x
= ake

(

−2d+ x0 log

(

d+ x0

x0 − d

))

(1)

where ke =
1

4πǫ0
is Coulomb’s constant. Now, assume the point is located on the negative x-axis:

V = ke

∫

dq

x0 + x
= ke

∫

d

−d

λdx

x0 + x
= kea

∫

d

−d

xdx

x0 + x
= ake

(

2d− x0 log

(

d+ x0

x0 − d

))

, (2)

note that this is just the negative of the answer we had before, which could also have been argued

based on symmetry.
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MT2 Problem 4 Rubric
(Dated: November 9, 2015)

PART A

• 2 points for a formula for the energy stored in a
capacitor:U = 1

2CV 2

• 2 points for a formula for the capacitance: C = ǫ0A
d

• 0.25 points for the initial capacitance: Ci =
ǫ0A
x

• 0.25 points for the final capacitance: Cf = ǫ0A
2x

• 0.25 points for the initial energy stored in the ca-

pacitor: Ui =
ǫ0AV 2

2x

• 0.25 points for the final energy stored in the capac-

itor: Uf = ǫ0AV 2

4x

PART B

• 0.25 points for the capacitance as a function the
distance between plates: C(y) = ǫ0A

y

• 0.25 points for the charge as a function of the dis-
tance: Q(y) = C(y)V = ǫ0AV

y

• 0.5 points for the surface charge density on the sec-

ond plate: σ(y) = Q(y)
A

= ǫ0V
y

• 1 point for the electric field created by plate 1 on

plate 2: E(y) = σ(y)
2ǫ0

= V
2y

• 1 point for the force acting on the second plate:

F (y) = Q(y)E(y) = ǫ0AV 2

2y2

• 1 point for the work: W =
∫ 2x

x
F (y)dy =

∫ 2x

x
ǫ0AV 2

2 y−2dy

• 1 point for the final answer: Wpull apart =
ǫ0AV 2

4x

PART C

• 1 point for the change in the energy stored in the

capacitor: ∆Ucapacitor = Uf − Ui = −
ǫ0AV 2

4x

• 2 points for the conservation of energy:
∆Ucapacitor = Wpull apart +Wbattery

• 1 point for the expression: Wbattery = −
ǫ0AV 2

4x −

ǫ0AV 2

4x

• 1 point for the final answer: Wbattery = −
ǫ0AV 2

2x



PROBLEM 5

x

L

L

+Q

-Q

^x

d

Figure 1. The physical setup of the problem

(a) For the first part, we can assume that we know the formula for the capacity
of a parallel plate capacitor with a vacuum between the plates, it’s

C =
ǫ0A

d
. (1)

If we have a capacitor where the dielectric (with dielectric constant K) is
fully inserted, the strength of the electric field between the plates is reduced,
which increases the capacitance to

C =
ǫ0KA

d
. (2)

In this case, we have neither of these situations. But we can clearly split
up the capacitor into two parts: The right part, where the dielectric is fully
inserted, which has surface area x ·L, and the right part with no dielectric,
which has surface area (L− x) · L.

We should then notice that these two capacitors are connected to each
other in parallel: The positively charged plate of the left capacitor is directly
connected to the positively charged plate of the right capacitor, and the
same thing holds for the negative plates. So we can add these capacitances:

Ctotal = Cleft + Cright. (3)

Stating (and explaining!) this gives you 2 points.

Then writing down the individual capacities gives you 1 point each:

Cleft =
ǫ0L(L− x)

d
, Cright =

ǫ0KLx

d
. (4)

Then you get 1 point for writing down the sum

C(x) =
ǫ0L

d
(L+ (K − 1)x). (5)
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2 PROBLEM 5

(b) Here we have to use the formula for the electrostatic energy stored in a
capacitor

U =
1

2
C(x)V 2

0 . (6)

This is equivalent U = Q2

2C
, if we then plug in the right value forQ, Q = CV0.

This formula gives you 3 points . We then have to plug in C to get

U =
V 2
0 ǫ0L

2d
(L+ (K − 1)x), (7)

which gives you 2 points if you wrote it down in the right variables.

(c) This part is more involved than the others, and unfortunately, it’s very
easy to get the ’right’ magnitude by completely wrong arguments. So if
you didn’t get points for this part, try to understand the actual solution.
Let’s first understand what’s physically going on:
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Figure 2. A ’microscopic’ picture of the dielectric and the plates

There are two things we should observe in figure 2: The first one is that
the dipoles which are just outside of the plates feel the fringe electric fields
at the boundary. From the picture, it should be clear that the dipole I
painted in green feels a force pulling it to the upper plate, and the dipole
in blue feels a force to the lower plate. In total, the vertical components
cancel out, and there is a net force which pulls the dielectric slab to the
left. For finding this direction, either by using this argument or via the

actual calculation we do below, you get 5 points .

The second thing in the picture is that the charge density on the plates
is not constant when we insert the dielectric. If we didn’t keep the voltage
difference between the plates constant, this would simply mean that some
charges are pulled from the left parts of the plates to the right parts during
the insertion, which reduces the potential difference. (Alternatively, note
that Q = CV , if C increases and Q is constant, V has to decrease).

In this case, however, the voltage is constant, so there can be no charges
leaving the left parts of the plates. So there have to be some charges added
to the metal plates during the insertion. Alternatively, observe that if
Q = CV and C increases while V is constant, Q has to increase.

So in summary there has to be some voltage source connected to the
plates that pushes an additional charge ∆Q(x) = (C(x) − C(0))V0 onto
them – for example, a battery.

To find the magnitude of the force on the dielectric, we note that x

describes the position of the slab in a coordinate system where the x-axis
goes to the left (cf. figure 1). So we can find the force on the slab by the
formula

~F = −~∇Utotal, (8)

where Utotal is the total potential energy of the system. (Note that actually,
x would have to be the center-of-mass coordinate of the slab, but because



PROBLEM 5 3

this is just a constant shift, this doesn’t matter). So let’s first find the total
energy of the system (which consists of the battery and the capacitor):

Ubattery = U0 − work = U0 − V0∆Q(x) = U0 − V 2
0 (C(x)− C(0)), (9)

where U0 is the energy of the battery before the insertion. So

Utotal(x) =
1

2
C(x)V 2

0 + const.− C(x)V 2
0 = const.−

1

2
C(x)V 2

0 , (10)

where the terms not depending on x are summed in the const. term. Plug-
ging this into 8 gives

~F =
V 2
0 ǫ0L

2d
(K − 1)x̂, (11)

so since K > 1 we can also see here that the force goes to the left (note
the direction of x̂ in figure 1). Getting the right magnitude (in the right

way, so by including the battery) gives you 5 points . Note that if we had

forgotten the battery, we would have, by sheer coincidence, gotten the same
magnitude (and the wrong direction). So if you did the same derivation,

but just forgot the battery and did everything else right, you got 2 points .

As a last point, note that there’s something obviously wrong about this
answer: When x approaches L, so the slab is almost fully inserted, we would
still have a non-zero force! In the physical picture, we can see that there
are almost no dipoles left to be pulled in, so the force should go to zero.
But when deriving the capacitance C = ǫ0A

d
, you assumed that the plates

are so large that you can neglect any boundary effects, which you would
have to take into account here. Fortunately, this only changes the result
when the dielectric is not inserted at all or when it’s pulled in almost all
the way.



Physics 7B Fall 2015 Midterm II Solutions

Part 1

(a) In the first case the equivalent capacitance is Ce =
C1C2

C1 + C2

=
C

2
, while in the second case the

equivalent capacitance is Ce = C1 + C2 = 2C.

Thus, in the first case, the charge stored on each capacitor is Q = CeV = CV
2
. In the second

case, the charge on each capacitor is half the charge on the equivalent capacitor, which is Q =
1

2
CeV = CV . So, the parallel capacitors hold more charge. 5 marks

Part 2

(a) In branch 1, the equivalent resistance is

Re = R+

(

1

2R
+

1

2R

)

−1

+R

= 2R+R

= 3R 2.5 Marks

In branch 2, the equivalent resistance is

Re =

(

1

R
+

1

R
+

1

R

)

−1

+

(

1

R
+

1

R

)

−1

+R

=
R

3
+

R

2
+R

=
11R

6
2.5 Marks

(b) The potential difference across the two branches will be equal. Ohm’s Law tells us that V =

I1R1 = I2R2, where R1 and R2 refer to the equivalent resistances of branches 1 and 2, respec-

tively. So,

I1R1

I2R2

= 1 ⇒
I1

I2
=

R2

R1

⇒
I1

I2
=

11

18
. 5 Marks

(c) Assume we have the capacitors in parallel The equivalent capacitance is 2C and the total charge

is Q0 = 2Q (1 Mark).

The equivalent resistance is

Re =

(

1

3R
+

6

11R

)

−1

=
33

29
R. 1 Mark

1



Physics 7B Fall 2015 Midterm II Solutions

The potential difference is V = Q0

2C
, and Ohm’s Law tells us that V = IR = −

dQ
dt
R. Thus,

Q0

2C
= −

dQ

dt
R

⇒
dQ

Q
= −

1

2RC
dt

⇒ Q(t) = Q0 exp

(

−
t

2RC

)

The total charge on the equivalent capacitor is equal to twice that of one of the capacitors, so

we have

Q(t) = 2CV exp

(

−
29t

66RC

)

. 3 Marks

2
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