UC Berkeley
 Department of Electrical Engineering and Computer Sciences

EE126: Probability and Random Process

Solution of Midterm 2

Fall 2014

Problem 1. (a) We have

$$
\begin{aligned}
\operatorname{Pr}(X>4) & =\operatorname{Pr}(X-1>3) \\
& =\frac{1}{2} \operatorname{Pr}(|X-1|>3) \\
& =\frac{1}{2} \times 2 / 9=1 / 9 .
\end{aligned}
$$

(b) They have same distributions. The reason is that $\operatorname{Pr}\left(Y_{1} \leq y\right)=\operatorname{Pr}(-\sqrt{y} \leq$ $\left.X_{1} \leq \sqrt{y}\right)=\sqrt{y}$. Also $\operatorname{Pr}\left(Y_{2} \leq y\right)=\operatorname{Pr}\left(X_{2} \leq \sqrt{y}\right)=\sqrt{y}$.
(c) With probability $1 / 3$ you arrive at a time that its corresponding interarrival time is 15 min and you have an expected waiting time of 7.5 min , and with probability $2 / 3$ you arrive at a time that its corresponding interarrival time is 30 min and you have expected waiting time of 15 min . So, the expected waiting time is $2 / 3 \times 15+1 / 3 \times 7.5=37.5 / 3=12.5$.
(d) We need to find expected value and variance of $T_{1} 00$. We have

$$
E\left[T_{100}\right]=100 \quad \text { and } \quad \operatorname{var}\left(T_{100}\right)=100 .
$$

So we approximate the distribution with $Z \sim N(100,100)$. Then,

$$
\operatorname{Pr}(Z>110)=\operatorname{Pr}\left(\frac{Z-100}{10}>1\right)=Q(1) \simeq 0.16
$$

(e) Let $\lambda=\lambda_{n}+\lambda_{s}+\lambda_{w}+\lambda_{e}$. Then, an arriving car is coming from north with probability $p_{n}=\lambda_{n} / \lambda$, from south with probability $p_{s}=\lambda_{s} / \lambda$ and so on. Now given 8 arrivals, the probability of 2 cars from each direction is

$$
\frac{8!}{2!2!2!2!} p_{n}^{2} p_{s}^{2} p_{w}^{2} p_{e}^{2}
$$

Problem 2. (a) It is easy to see that the answer is $0.6 \times 0.4+0.4 \times 0.5=0.44$.
(b) We solve flow-conserving equations

$$
\begin{aligned}
\pi(1) 0.4 & =\pi(2) 0.2 \\
\pi(2) 0.3 & =\pi(3) 0.1 \\
\pi(1)+\pi(2)+\pi(3) & =1
\end{aligned}
$$

So $\pi=[1 / 9,2 / 9,6 / 9]$.
(c) The limit is $\pi(1) \times 0.4+\pi(2) \times 0.3=1 / 9$.
(d) No. Note that $\operatorname{Pr}\left(Y_{n}=1 \mid Y_{n-1}=1, Y_{n-2}=1\right)=0$ but $\operatorname{Pr}\left(Y_{n}=1 \mid Y_{n-1}=1\right)>$ 0.
(e) In the stationary case, the probability of a right transition is $\pi(1) 0.4+\pi(2) 0.3$. So the answer is

$$
\frac{\pi(1) 0.4}{\pi(1) 0.4+\pi(2) 0.3} .
$$

(f) We write first step equations. Let β be the expected hitting time of 1 from 2 and γ be the expected hitting time of 3 . Then,

$$
\begin{aligned}
& \beta=1+0.5 \beta+0.3 \gamma \\
& \gamma=1+0.9 \gamma+0.1 \beta .
\end{aligned}
$$

Then, $E(T)$ is the expected time to hit state 2 plus β, which is $\beta+1 / 0.4$.

Problem 3. (a) Let t be the number of right moves in our samples. Then, probability of the sample sequence is $p^{t}(1-p)^{n-t}$. Taking the log and setting derivative equal to 0 we have

$$
t / p-(n-t) /(1-p)=0 \Rightarrow p_{M L}=t / n .
$$

The estimator is unbiased since $E[T / n]=p$, where T is the random variable denoting the number of right moves.
(b) Let t_{1} be the number of right moves and t_{2} be the number of left moves. Then, the probability of a sample random walk is $p^{t_{1}} q^{t_{2}}(1-p-q)^{n-t_{1}-t_{2}}$. Again we take \log of the function and set the partial derivative with respect to p and q to 0 . Then,

$$
\begin{aligned}
& \frac{t_{1}}{p}-\frac{n-t_{1}-t_{2}}{1-p-q}=0 \\
& \frac{t_{2}}{q}-\frac{n-t_{1}-t_{2}}{1-p-q}=0 .
\end{aligned}
$$

So $p_{M L}=t_{1} / n$ and $q_{M L}=t_{2} / n$.

Problem 4. (a) Due to phase transition effect, as n goes to infinity, given that $Y=1$, any value $p \in(\log (n) / n, 1]$ is a maximum-likelihood estimator. Given that $Y=0$, any value $p \in[0, \log (n) / n)$ is the MLE.
(b) Given the prior the MAP estimator of p given $Y=1$ is $2 / 3$ and the MAP estimator of p given $Y=0$ is 0 .

Problem 5. (a) The arrival transitions from state i to state $i+2$ is λ for $0 \leq i \leq 2$. The service transitions from state i to state $i-1$ is $i \mu$ for $1 \leq i \leq 4$.
(b) The blocking probability is $\pi_{3}+\pi_{4}$ because a job cannot find 2 (or more) servers with this probability.

(c) The average download time for two chunks is $\frac{1}{2 \mu}+\frac{1}{\mu}=1.5 \frac{1}{\mu}$.
(d) The coded storage is more flexible because it can accept a job if the number of busy disks is less than or equal to 2 regardless of which disks are busy. On the other hand, the uncoded storage is less flexible. For instance, it cannot accept a job if both disks that are storing F_{1} are busy because the job cannot find a disk that can provide F_{1}.
(e) Using the conservation of flow,

$$
\begin{aligned}
\lambda \pi_{0} & =\pi_{1} \\
\lambda\left(\pi_{0}+\pi_{1}\right) & =2 \pi_{2} \\
\lambda\left(\pi_{1}+\pi_{2}\right) & =3 \pi_{3} \\
\lambda \pi_{2} & =4 \pi_{4}
\end{aligned}
$$

From the first and the second equations, $\pi_{2}=\frac{\lambda(\lambda+1)}{2} \pi_{0}$. From the third equation, $\pi_{3}=\frac{\lambda^{2}(\lambda+3)}{6} \pi_{0}$. From the last equation, $\pi_{4}=\frac{\lambda^{2}(\lambda+1)}{8} \pi_{0}$. By normalizing these using $\sum \pi_{i}=1$, we obatin

$$
\pi=\frac{24}{7 \lambda^{3}+27 \lambda^{2}+36 \lambda+24}\left[1, \lambda, \frac{\lambda(\lambda+1)}{2}, \frac{\lambda^{2}(\lambda+3)}{6}, \frac{\lambda^{2}(\lambda+1)}{8}\right] .
$$

