
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2015 Instructors: Vladimir Stojanovic, John Wawrzynek 2015-09-06

L J

After the exam, indicate on the line above where you fall in the emotion spectrum between “sad” & “smiley”...	

Last Name PERFECT

First Name PETER

Student ID Number
CS61C Login cs61c-

The name of your SECTION TA (please circle)

Alex | Austin | Chris | David | Derek | Eric | Fred |
Jason | Manu | Rebecca | Shreyas | Stephan |

William | Xinghua

Name of the person to your LEFT

Name of the person to your RIGHT

All the work is my own. I had no prior knowledge of the exam
contents nor will I share the contents with others in CS61C

who have not taken it yet. (please sign)

Instructions (Read Me!)
• This booklet contains 7 numbered pages including the cover page. The back of each page is blank and

can be used for scratch-work, but will not be looked at for grading. (i.e. the sides of pages without the
printed “SID: _______” header will not even be scanned into gradescope).

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats & headphones.
Place your backpacks, laptops and jackets under your seat.

• You have 80 minutes to complete this exam. The exam is closed book; no computers, phones, or calculators
are allowed. You may use one handwritten 8.5”x11” page (front and back) of notes in addition to the
provided green sheet.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will deduct
points if your solution is far more complicated than necessary. When we provide a blank, please fit your
answer within the space provided.

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Total
Points
Possible

10 10 15 15 15 15 9 90

Points
Earned

SID: _________________

2/7

Q1: A dozen ways to ask about bits (10 points)

1) For a 12-bit integer represented with two’s complement, what is the:

a) Most positive value (in decimal): _______2047______

b) Binary representation of that number: _0b011111111111__

 c) Most negative value (in decimal): ______-2048______

 d) Hex representation of that number: ______0x800______

 e) In general, for an n-bit, two’s complement integer:

i) What is the largest value you can represent, in decimal? ___2^(n-1) - 1___

ii) What is the smallest value you can represent, in decimal? _____-2^(n-1)_____

2) Fill in the blank below so that the function mod16 will return the remainder of x when divided by 16.
The first blank should be a bitwise operator, and the second blank should be a single decimal
number:

 unsigned int mod16(unsigned int x) {

 return x ___&____ _______15_______;
}

SID: _________________

3/7

Q2: Wow! If only you could C the main memory (10 points)

Consider the following C program:

int a = 5;
void foo(){
 int temp;
}
int main()
{
 int b = 0;
 char* s1 = “cs61c”;
 char s2[] = “cs61c”;
 char* c = malloc(sizeof(char) * 100);
 foo();
 return 0;
};

1) Sort the following values from least to greatest: &b, c, b, &temp, &a.

b < &a < c < &temp < &b

2) For each of the following values, state the location in the memory layout where they are stored.
Answer with code, static, heap, or stack.

s1 stack

s2 stack

s1[0] static

s2[0] stack

c[0] heap

SID: _________________

4/7

Q3: Links, Links, and Lists (15 points)

Here, we have a two-sided linked list, where each node has a reference to both the previous and next
node in the list. The HEAD of the list is defined as the node with a NULL prev pointer, and the TAIL of
the list is defined as the node with a NULL next pointer.

struct ll_node {
 unsigned short id;
 struct ll_node *prev;
 struct ll_node *next;
};

For the remainder of the questions, assume that the struct ll_node is tightly-packed (i.e, all its
elements are contiguous in memory).

1) We are given a struct ll_node current_node. Assuming that the type unsigned short is 2
bytes wide and that we are working with a 32-bit memory address space, what can we expect the
function call sizeof(current_node) to return?

 _______10_______

2) Assume that we have access to id_addr, the address of the id of current_node in memory.
Using only id_addr, fill in the blank line so that next_node is equivalent to current_node.next.

unsigned short *id_addr = &(current_node.id);
struct ll_node *next_node = *(_(struct ll_node **) (id_addr + 3)_);

3) Now, fill in the blanks to complete this function that, given a random node in the list, frees all
reachable nodes from that given node. Keep in mind that the node may be the HEAD of the list, the
TAIL of the list, or a node in between the HEAD and TAIL. You may not need every blank.

void free_twosided_ll(struct ll_node *node) {
 if (node != NULL) {
 if (node->prev != NULL) {
 ___________(node->prev)->next = NULL;____________
 ___________free_twosided_ll(node->prev);_________
 }
 if (node->next != NULL) {
 ___________(node->next)->prev = NULL;____________
 ___________free_twosided_ll(node->next);_________
 }
 ____________free(node);________________

 }
}

SID: _________________

5/7

Q4: beargit redux (15 points)

From project 1, you may remember the function is_commit_msg_ok() that you needed to implement
in C. Here is a simpler rendition where commit messages are deemed okay if and only if those null-
terminated commit messages exactly match go_bears. Using the fewest number of empty lines
possible, finish writing the code below. You are only allowed to use the registers already provided
and registers $t0-3, and $s0-s2 (but you will not need all of them). Assume these registers are
initialized to 0 before the call to ISCOMMITOK.

const char* go_bears = "THIS IS BEAR TERRITORY!";

int is_commit_msg_ok(const char* msg, const char* go_bears) {
 for (int i = 0; msg[i] && go_bears[i]; i++) {
 if (go_bears[i] != msg[i]) return 0;
 }
 if (!msg[i] && !go_bears[i]) return 1;
 return 0;
}

ISCOMMITOK: __________________________

 lb $t0 __0_($a0)
 lb $t1 __0_($a1)
COND: ____and $t2 $t0 $t1_____
 ____beq $t2 $0 EXIT_____
 ____bne $t0 $t1 FAILED__
 addiu $a0 $a0 1
 addiu $a1 $a1 1
 _____j ISCOMMITOK_______

EXIT: _or_ $t2 $t0 $t1
 ____bne $t2 $0 FAILED__
 li $v0 1
 ____j END________________
FAILED: li $v0 0
END: ____jr $ra_______________

SID: _________________

6/7

Q5: MIPS Sleuth (15 points)

mystery, a mysterious MIPS function outlined below, is written without proper calling conventions.
mystery calls a correctly written function, random, that takes an integer i as its only argument, and
returns a random integer in the range [0, i - 1] inclusive.

 1 mystery: addiu $sp $sp ________-16_________
 2 __________sw $s0 0($sp)__________
 3 __________sw $s1 4($sp)__________
 4 __________sw $s2 8($sp)__________
 5 __________sw $ra 12($sp)_________
 6 __________________________________
 7 addu $s0 $0 $0
 8 move $s1 $a0
 9 move $s2 $a1
10 loop: srl $t0 $s0 2
11 beq $t0 $s2 exit
12 subu $a0 $s2 $t0
13 jal random
14 sll $v0 $v0 2
15 addu $v0 $v0 $s0
16 addu $t0 $s1 $s0
17 addu $t1 $s1 $v0
18 lw $t2 0($t0)
19 lw $t3 0($t1)
20 sw $t2 0($t1)
21 sw $t3 0($t0)
22 addiu $s0 $s0 4
23 j loop
24 exit: __________lw $s0 0($sp)__________
25 __________lw $s1 4($sp)__________
26 __________lw $s2 8($sp)__________
27 __________lw $ra 12($sp)__________
28 _________addiu $sp $sp 16________
29 ______________jr $ra______________
30 ___________________________________

1) Fill in the prologue and the epilogue of this MIPS function. Assume that random follows proper
calling conventions, and that it may make its own function calls. You may not need all of the lines.

2) What operation does this function perform on an integer array? Assume that both the integer array
and the length of the array are passed into the function.

The function shuffles the integer array in place.

3) Would this function work as expected if a string was passed into the function instead? Write down
the line numbers of all lines of MIPS code that must be changed (if any at all), so that the function
works correctly on strings. Do not write down any extraneous line numbers.

10, 14, 18, 19, 20, 21, 22

SID: _________________

7/7

Q6: Registers: bigger is not always better (16 points)

You decide that instead of having 32, 32-bit registers, you would like to build a machine with 16, 64-
bit registers. You also need to make a modified MIPS instruction set for this architecture.

1) In the box below, specify the size of the fields to best utilize the 32-bit instructions on this new
architecture. Do not modify the size of the opcode.

6 4 4 4 6 8

6 4 4 18

2) How many different R-type instructions can we now have? ________2^8_____

3) If PC = 0x061C, what is the largest address that we can branch to? _____0x8061C____
0x61c + 4 + (2^17 – 1)*4 = 0x61C + 2^19 = 0x61C + 2^(4*4)*8

4) Translate the following machine code into MIPS using your new field sizes. Use register numbers
instead of register names, since we’d have to think of a new convention for the names…

0xAE9FFFF8
101011 | 1010 | 0111 | 111…1000

 sw $7 -8($10)

Q7: After this, you’re CALL done! (9 points)

Connect the definition with the name of the process that describes it.

a) Compiler
b) Assembler
c) Linker
d) Loader

1) Outputs code that may still contain pseudoinstructions. __a__
2) Takes binaries stored on disk and places them in memory to run. __d__
3) Makes two passes over the code to solve the "forward reference" problem. __b__
4) Creates a symbol table. __b__
5) Combines multiple text and data segments. __c__
6) Generates assembly language code. __a__
7) Generates machine language code. __b__
8) Only allows generation of TAL. __b__
9) Only allows generation of binary machine code. __c__

 opcode rs rt rd shamt funct

 opcode rs rt imm

