
CS 61A Structure and Interpretation of Computer Programs
Fall 2015 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official CS 61A study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email (_@berkeley.edu)

TA

All the work on this exam is my own.
(please sign)

http://berkeley.edu

2

1. (12 points) ok --submit

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If more than 3 lines are displayed, just
write the first 3. If an error occurs, write “Error”. If evaulation would run forever, write “Forever”.

The first two rows have been provided as examples.

Assume that you have started python3 and executed the following statements (which do not cause errors):

class Ok:

py = [3.14]

def __init__(self , py):

self.ok = self.py

Ok.py.append (3 * py)

def my(self , eye):

print(self.my(eye))

return self.ok.pop()

def __str__(self):

return str(self.ok)[:4]

class Go(Ok):

def my(self , help):

return [help+3, len(Ok.py)]

oh = Go(5)

Go.py = [3, 1, 4]

oh.no = {’just’: Go(9)}

Expression Interactive Output

’z’ * 3 ’zzz’

print(4, 5) + 1
4 5
Error

oh.py [3, 1, 4]

oh.my(3) [6, 3]

oh.ok + oh.no[’just’].ok [3.14, 15, 27, 3, 1, 4]

print(oh) [3.1

Ok(’go’).my(5) “Error”

Ok.my(oh, 5)
[8, 4]
’gogogo’

Name: 3

2. (14 points) Exercises

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

You are not required to write index numbers in list boxes.

Global f

func b(it) [parent=Global]

def f(it):
 it.append(it[1]())

def b(it):
 def steps():
 nonlocal it
 it = fit[0]
 return fit.pop()
 return steps

fit = [1, [2]]
bit = [fit, b(fit[1])]
f(bit)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

b

func f(it) [parent=Global]

f1: b [parent=Global]

Return Value

f2: f [parent=Global]

Return Value

f3: si [parent=f1]

Return Value

it

steps

fit

bit

list
0
2

list
0 11

list
0 1

func steps() [parent=f1]

it

2

1

None

4

(b) (8 pt) In each box next to a line of code below, write the number of the environment diagram that would
result after executing that line and complete the diagram by adding all missing values (boxes and arrows).

Suggestion: You may want to write out the whole diagram elsewhere (scratch paper or the bottom left of
this page) before filling in the answer area.

list
0 1

a = [1, 1]

b = [1, 1]

c = a + [b]

d = c[1:2]

while a:

 b.extend([[a.pop()]])

 d, b = b, d

a = b

b[2][0], d = c, b[2]

Global frame

a
b
c
d

Global frame

a
b
c
d

Global frame

a
b
c
d

#1

#2

#3

Write numbers
(1, 2, or 3)

in these boxes

Complete these
diagrams

1 1
list
0 11 1

list
0 11 1
list
0 1

2

list
0 11 1 2

list
0 11 1 2

list
0 11

list
0 1

list
0 1

list
0 11 1 2

list
0 11 1 2

list
0

Name: 5

3. (24 points) Return of the Digits

(a) (4 pt) Implement complete, which takes a Tree instance t and two positive integers d and k. It returns
whether t is d-k-complete. A tree is d-k-complete if every node at a depth less than d has exactly k branches
and every node at depth d is a leaf. Notes: The depth of a node is the number of steps from the root; the
root node has depth 0. The built-in all function takes a sequence and returns whether all elements are true
values: all([1, 2]) is True but all([0, 1]) is False. Tree appears on the Midterm 2 Study Guide.

def complete(t, d, k):

""" Return whether t is d-k-complete.

>>> complete(Tree(1), 0, 5)

True

>>> u = Tree(1, [Tree(1), Tree(1), Tree (1)])

>>> [complete(u, 1, 3) , complete(u, 1, 2) , complete(u, 2, 3)]

[True , False , False]

>>> complete(Tree(1, [u, u, u]), 2, 3)

True

"""

if not t.branches:

return d == 0

bs = [complete(b, d-1, k) for b in t.branches]

return len(t.branches) == k and all(bs)

(b) (4 pt) Implement adder, which takes two lists x and y of digits representing positive numbers. It mutates
x to represent the result of adding x and y. Notes: The built-in reversed function takes a sequence and
returns its elements in reverse order. Assume that x[0] and y[0] are both positive.

def adder(x, y):

""" Adds y into x for lists of digits x and y representing positive numbers.

>>> a = [3, 4, 5]

>>> adder(a, [5, 5]) # 345 + 55 = 400

[4, 0, 0]

>>> adder(a, [8, 3, 4]) # 400 + 834 = 1234

[1, 2, 3, 4]

>>> adder(a, [3, 3, 3, 3, 3]) # 1234 + 33333 = 34567

[3, 4, 5, 6, 7]

"""

carry , i = 0, len(x)-1

for d in reversed ([0] + y):

if i == -1:

x.insert(0, 0)

i = 0

d = carry + x[i] + d

carry , x[i], i = d // 10, d % 10, i-1

if x[0] == 0:

x.remove (0)

return x

6

(c) (6 pt) Implement multiples, which takes a positive integer k and a linked list s of digits greater than 0
and less than 10. It returns a linked list of all positive n that are multiples of k greater than k and made
up of digits only from s. The digits in each n must appear in the same order as they do in s, and each digit
from s can appear only once in each n. The Link class appears on the Midterm 2 Study Guide.

def multiples(k, s):

""" Return a linked list of all multiples of k selected from digits in s.

>>> odds = Link(1, Link(3, Link(5, Link(7, Link (9)))))

>>> multiples (5, odds)

Link (135, Link(15, Link (35)))

>>> multiples (7, odds)

Link (1379, Link (357, Link (35)))

>>> multiples (9, odds)

Link (1359, Link (135))

>>> multiples (2, odds)

()

"""

t = Link.empty

def f(n, s):

nonlocal t

if s is Link.empty:

if n > k and n % k == 0:

t = Link(n, t)

else:

f(n, s.rest)

f(n*10+s.first , s.rest)

f(0, s)

return t

(d) (2 pt) Circle the Θ expression that describes the length of the linked list returned by multiples(1, s) for
an input list of length n. Assume multiples is implemented correctly.

Θ(1) Θ(log n) Θ(n) Θ(n2) Θ(2n)

Note: Θ(1) was also accepted if accompanied by the justification that s would not contain repeated digits.

Name: 7

(e) (8 pt) Implement int_set, which is a higher-order function that takes a list of non-negative integers called
contents. It returns a function that takes a non-negative integer n and returns whether n appears in
contents. Your partner left you this clue: Every integer can be expressed uniquely as a sum of powers of 2.
E.g., 5 equals 1 + 4 equals pow(2, 0) + pow(2, 2). The bits helper function encodes a list of nums using
sequences of 0’s and 1’s that tell you whether each power of 2 is used, starting with pow(2, 0).
Note: You may not use built-in tests of list membership, such as an in expression or a list’s index method.

def bits(nums):

"""A set of nums represented as a function that takes ’entry ’, 0, or 1.

>>> t = bits([4, 5]) # Contains 4 and 5, but not 2

>>> t(0)(0)(1)(’ entry ’) # 4 = 0 * pow(2, 0) + 0 * pow(2, 1) + 1 * pow(2, 2)

True

>>> t(0)(1)(’ entry ’) # 2 = 0 * pow(2, 0) + 1 * pow(2, 1)

False

>>> t(1)(0)(1)(’ entry ’) # 5 = 1 * pow(2, 0) + 0 * pow(2, 1) + 1 * pow(2, 2)

True

"""

def branch(last):

if last == ’entry’:

return 0 in nums

return bits([k // 2 for k in nums if k % 2 == last])

return branch

def int_set(contents):

""" Return a function that represents a set of non -negative integers.

>>> int_set ([1, 2])(1) , int_set ([1, 2])(3) # 1 in [1, 2] but 3 is not

(True , False)

>>> s = int_set ([1, 3, 4, 7, 9])

>>> [s(k) for k in range (10)]

[False , True , False , True , True , False , False , True , False , True]

"""

index = bits(contents)

def contains(n):

t = index

while n:

last , n = n % 2, n // 2

t = t(last)

return t(’entry ’)

return contains

8

4. (0 points) Back to the Future

Draw a picture of what would happen if Fibonacci traveled through time to October 22, 2015.

