Solution of Midterm 1

ME 106, Fall 2015

Problem 1: (Total 5 points) This will not work. Suppose we have a perfect pump producing a perfect vacuum (absolute zero pressure). The pressure at the water level is atmospheric since the well is open. Using the hydrostatic relation between the pump (0) and water level (1)

$$
P_{0}=P_{1}-\gamma h_{\max }, \quad P_{0}=0, \quad \Rightarrow \quad h_{\max }=\frac{P_{0}}{\gamma}=\frac{101000(\mathrm{pa})}{998\left(\frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right) \times 9.81\left(\frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}=10.31(\mathrm{~m}) .
$$

Thus a perfect pump will draw the water up only 10.31 m , not the 18 m required.

Problem 2: (Total 9 points) Bernoulli's equation represents conservation of energy or conservation of total pressure (1 point). The P is static or thermodynamics pressure (1 point), $\frac{1}{2} \rho V^{2}$ is dynamic pressure or specific kinetic energy (1 point), and $\rho g z$ is the hydrostatic pressure or specific potential energy due to gravity (1 point). The assumptions are

- Steady state or $\partial / \partial t=0$. (1 point)
- Incompressible, or ρ is constant. (1 point)
- Inviscid, or $\mu=0$. (1 point)
- No source of heat or isothermal (also no external work done to the flow). (1 point)
- Relation holds along a streamline or in 1D flow. (1 point)

Problem 3: (Total 12 points) Use Bernoulli's equation along a streamline from the top
surface (1) to the centerline of the exit jet(2).

$$
\begin{aligned}
P_{1}+\frac{1}{2} \rho V_{1}^{2}+\gamma z_{1} & =P_{2}+\frac{1}{2} \rho V_{2}^{2}+\gamma z_{2}, \quad \text { (3 point) } \\
P_{1}=P_{\text {atm }}, z_{1}-z_{2} & =H, V_{1}=0 \quad \text { (3 point) }
\end{aligned}
$$

Surface tension around the jet increases the pressure inside the jet $\left(P_{2}\right)$ according to

$$
P_{2}-P_{a t m}=\frac{2 \sigma}{D} \quad(3 \text { point })
$$

substituting the above into Bernoulli's equation and solving for V_{2} we obtain

$$
V_{2}=\sqrt{\frac{1}{\rho}\left(\frac{-4 \sigma}{D}+2 \gamma H\right)} \quad \text { (3 point) }
$$

Problem 4: (Total 20 points) Let $b=5(\mathrm{ft})$ be the width of the gate into the page. The

resultant pressure on the left side is the pressure at the centroid $h_{1 c}=5(\mathrm{ft})$

$$
P_{1 c}=\gamma_{w} h_{1 c}=\gamma\left(\mathrm{lb} / \mathrm{ft}^{3}\right) \times 5(\mathrm{ft})=5 \gamma\left(\mathrm{lb} / \mathrm{ft}^{2}\right), \quad \text { (2 point) }
$$

The resultant force F_{1} is pressure $P_{1 c}$ times wet area A_{1}

$$
\begin{gathered}
A_{1}=h_{1} b=10(\mathrm{ft}) \times 5(\mathrm{ft})=10 b\left(\mathrm{ft}^{2}\right), \quad(1 \text { point }) \\
F_{1}=P_{1 c} A_{1}=5 \gamma\left(\mathrm{lb} / \mathrm{ft}^{2}\right) \times 10 b\left(\mathrm{ft}^{2}\right)=50 \gamma b(\mathrm{lb}) . \quad \text { (2 point) }
\end{gathered}
$$

The resultant force F_{1} acts at the centroid of the pressure prism $(2 / 3$ depth $=20 / 3 \mathrm{ft})$. This can also be derived as

$$
y_{1 p}=y_{1 c}+\frac{I_{x x}^{c}}{y_{1 c} A_{1}}=\frac{h_{1}}{2}+\frac{\frac{1}{12} h_{1}^{3} b}{\frac{h_{1}}{2}\left(h_{1} b\right)}=\frac{2}{3} h_{1}=\frac{2}{3} \times 10=6.67(\mathrm{ft}) . \quad(3 \text { point })
$$

Hence the moment arm about the hinge is $L_{1}=2(\mathrm{ft})+6.67(\mathrm{ft})=8.67(\mathrm{ft})$ (1 point).
On the right side, the centroid is at $h_{2 c}=h / 2$, and the pressure at centroid is $P_{2 c}$, the wet area A_{2} and the force from the right side F_{2} are

$$
\begin{aligned}
P_{2 c} & =(S G) \gamma(h / 2)=1.025 \times \gamma\left(\mathrm{lb} / \mathrm{ft}^{3}\right) h / 2=0.5125 \gamma h\left(\mathrm{lb} / \mathrm{ft}^{2}\right), \quad \text { (2 point) } \\
A_{2} & =h b\left(\mathrm{ft}^{2}\right), \quad(1 \text { point }) \\
F_{2} & =P_{2 c} A_{2}=0.5125 \gamma h\left(\mathrm{lb} / \mathrm{ft}^{2}\right) h b\left(\mathrm{ft}^{2}\right)=0.5125 \gamma b h^{2}(\mathrm{lb}) . \quad \text { (2 point) }
\end{aligned}
$$

The resultant force F_{2} acts at $2 / 3$ depth $(2 \mathrm{~h} / 3 \mathrm{ft})$, which can also be derived as

$$
y_{2 p}=y_{2 c}+\frac{I_{x x}^{c}}{y_{2 c} A_{2}}=\frac{h}{2}+\frac{\frac{1}{12} h^{3} b}{\frac{h}{2}(h b)}=\frac{2}{3} h(\mathrm{ft}) . \quad \text { (2 point) }
$$

Hence the moment arm from point A is $L_{2}=12(\mathrm{ft})-h / 3(\mathrm{ft})$ (1 point).
The balance of moments around point A is

$$
\begin{gathered}
\sum M_{A}=0, \quad \Rightarrow \quad F_{1} L_{1}-F_{2} L_{2}=0 \\
50 \gamma b(\mathrm{lb}) \times 8.67(\mathrm{ft})=0.5125 \gamma b h^{2}(\mathrm{lb}) \times(12-h / 3)(\mathrm{ft}) \quad \text { (2 point) }
\end{gathered}
$$

Simplifying and solving $h^{2}(36-h)=2537.56$ yields $h=9.85(\mathrm{ft})$ (1 point).

Problem 5: (Total 20 points) (a) From conservation of mass $Q=V_{A} A_{A}=V_{B} A_{B} \quad$ (2 point). The area of the pipe outlet is $A_{A}=\frac{\pi}{4} D^{2}=7.8538 \times 10^{-5}\left(\mathrm{~m}^{2}\right)$ (1 point) and the area of horizontal output at the edge of circular disk is $A_{B}=2 \pi R t=1.2566 \times 10^{-4}\left(\mathrm{~m}^{2}\right)(1$ point). Writing Bernoulli between point A and B (1 point)

$$
\frac{P_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{P_{B}}{\gamma}+\frac{V_{B}^{2}}{2 g}+z_{B} .
$$

Since both points A and B are free jets, $P_{A}=P_{B}=P_{\text {atm }}$ (1 point) and the cancel from the equation. Also set $z_{A}=0$ and $z_{B}=z$ (1 point), the elevation of point B with respect to the pipe outlet. Moreover, from conservation of mass

$$
V_{A}=\frac{Q}{A_{A}}, \quad V_{B}=\frac{Q}{A_{B}} . \quad \text { (2 point) }
$$

Substituting velocities in Bernoulli yields

$$
\frac{Q^{2}}{2 g A_{A}^{2}}=\frac{Q^{2}}{2 g A_{B}^{2}}+z . \quad \text { (1 point) }
$$

Solving for Q gives (2 point)
$Q=\sqrt{\frac{2 g z}{A_{A}^{-2}-A_{B}^{-2}}}=\sqrt{\frac{2 \times 9.81\left(\mathrm{~m} / \mathrm{s}^{2}\right) \times 0.2(\mathrm{~m})}{\left(7.8538 \times 10^{-5}\left(\mathrm{~m}^{2}\right)\right)^{-2}-\left(1.2566 \times 10^{-4}\left(\mathrm{~m}^{2}\right)\right)^{-2}}}=2 \times 10^{-4}\left(\mathrm{~m}^{3} / \mathrm{s}\right)$.
(b) Writing Bernoulli equation between point (A) and (C)

$$
\frac{P_{A}}{\gamma}+\frac{V_{A}^{2}}{2 g}+z_{A}=\frac{P_{C}}{\gamma}+\frac{V_{C}^{2}}{2 g}+z_{C} . \quad \text { (1 point) }
$$

The flow at (A) is free jet so the gage pressure $P_{A}=P_{\text {atm }}=0$ (1 point). However, point (C) is stagnation point, hence P_{C} is the stagnation pressure, and $V_{C}=0$ (1 point). The height of manometer is $H=P_{C} / \gamma$ (2 point), so

$$
H=\frac{P_{C}}{\gamma}=\frac{V_{A}^{2}}{2 g}-z . \quad \text { (1 point) }
$$

Also $V_{A}=Q / A_{A}=2 \times 10^{-4}\left(\mathrm{~m}^{3} / \mathrm{s}\right) / 7.8538 \times 10^{-5}\left(\mathrm{~m}^{2}\right)=2.545(\mathrm{~m} / \mathrm{s})$ (1 point). Thus

$$
H=\frac{(2.545(\mathrm{~m} / \mathrm{s}))^{2}}{2 \times 9.81\left(\mathrm{~m} / \mathrm{s}^{2}\right)}-0.2(\mathrm{~m})=0.13(\mathrm{~m}) . \quad(1 \text { point })
$$

