ChE 140 Midterm 1 October 5, 2011

Problem 1 (20 points)
Problem 2 (25 points) \qquad
Problem 3 (30 points) \qquad Problem 4 (25 points) \qquad

Total Score (Out of 100 points)

Problem 1 (20 points):
Find the shape of the trough $\mathrm{X}=\mathrm{f}(\mathrm{Y})$ with length L (figure shows half of the trough) that would cause the liquid water level y to decrease linearly with time ($\mathrm{dY}=\beta \mathrm{dt}, \beta$ is a constant). The water drains at a rate $(d V / d t)$ given by $\alpha Y^{1 / 2}$ (α is a constant) when the water level is Y.

Problem 2 (25 points):

The flow chart above describes the separation of A from a mixture of A and B. The system is at steady state, and there is no reaction. The following information is known (and has also been labeled on the flow chart above):

The overall feed stream (stream 1) contains A and B, and is $30 \mathrm{wt} \% \mathrm{~A}$.
Separator \#1 separates some of the A in stream 2 into stream 3 (no B goes into stream 3; both A and B go into stream 4), and operates optimally with a separator feed stream (stream 2) containing $29 \mathrm{wt} \% \mathrm{~A}$.
Separator \#2 is designed for a separator feed stream (stream 6) having a flow rate of $175 \mathrm{~kg} / \mathrm{hr}$, and is 50% efficient at separating component A into stream 7, meaning 50% of the A in stream 6 is separated into stream 7 (and no B goes into stream 7).
Stream 8 contains $15 \mathrm{wt} \%$ A.
Do a degree of freedom analysis on each unit (including separators, mixers, and splitter) as well as the overall system. (10 points)
Develop a strategy and solve for the following flowrates: m_{1}, m_{5}, and m_{9}. Make sure to clearly indicate what you are doing in each step! (15 points)

Problem 3 (30 points):
Ammonia is made at 200 . bar and $327^{\circ} \mathrm{C}$ by the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}=3.36 \times 10^{-4}
$$

Nitrogen and hydrogen are fed to the reactor (stream 2) in stoichiometric proportion.

What is the equilibrium per pass conversion? (15 points)
What is the molar flow rate of stream 4 ? (15 points)

Problem 4 (25 points):
(Distillation and Reaction in a CSTR) The cracking of liquid dodecane $\left(\mathrm{A}, \mathrm{C}_{12} \mathrm{H}_{26}\right)$ to one mole of gaseous butane $\left(\mathrm{B}, \mathrm{C}_{4} \mathrm{H}_{10}\right)$ and two moles of gaseous butene $\left(\mathrm{C}, \mathrm{C}_{4} \mathrm{H}_{8}\right)$ is carried out in a steady-state CSTR held at 300 K and 1 bar total pressure. The products are removed as a gaseous stream and are not soluble in the liquid, causing the liquid volumetric flow rate to be smaller at the outlet than at the inlet. Pure A has negligible vapor pressure, enters at 5 liters/h, and the unconverted A exits as a liquid stream. The volume of liquid within the reactor is 1 liter and is kept constant by a level controller. The rate of formation of A is
$\mathrm{r}_{\mathrm{A}}($ moles $\mathrm{A} /($ liter liquid $)-\mathrm{h})=-\mathrm{k} \mathrm{C}_{\mathrm{A}}$
where k is $1 \mathrm{~h}^{-1}$ at 300 K . The density of pure A is $0.6 \mathrm{~g} / \mathrm{cm}^{3}$ and the molecular weights are $\mathrm{M}_{\mathrm{A}}=170 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{B}}=58 \mathrm{~g} / \mathrm{mol}$, and $\mathrm{M}_{\mathrm{C}}=56 \mathrm{~g} / \mathrm{mol}$.

Calculate the following:
the fractional conversion of $\mathrm{A}\left(\mathrm{f}_{\mathrm{A}}\right)(15$ points $)$
the molar rate of butane (B) leaving the reactor (5 points)
at 350 K , the rate constants is twice that at 300 K , what is the inlet volumetric flow rate of pure A required to give the same conversion as in part (i) (5 points)

