Problem 1:

Consider an infinitesimal volume dv in the trough such that dv = L.X.dy = L.f(Y).dyWe know that $dy = \beta.dt$ so we get dv = L.f(Y). $\beta.dt$ Also given that $dv/dt = \alpha y^{1/2}$ => L.f(Y). $\beta.dt = \alpha y^{1/2}$. dt=> L.f(Y). $\beta = \alpha y^{1/2}$. dt $=> f(Y) = \alpha y^{1/2} / L. \beta$

Problem 2:

a) <u>Mixer #1</u>: DOF = 4 unknowns (m₁, m₂, m₅, x_{A5}) – 2 balances = 2

<u>Separator #1</u>: DOF = 4 unknowns $(m_2, m_3, m_4, x_{A5}) - 2$ balances = 2

<u>Splitter</u>: DOF = 3 unknowns $(m_4, m_5, x_{A5}) - 1$ balance = 2

<u>Separator #2</u>: DOF = 3 unknowns (m_7 , m_8 , x_{A5}) - 2 balances - 1 efficiency = 0

<u>Mixer #2</u>: DOF = 3 unknowns (m_3, m_7, m_9) - 1 balance = 2

<u>Overall</u>: DOF = 3 unknowns (m_1, m_8, m_9) - 2 balances = 1

b) Separator #2 Balance: A balance: $x_{A5}(175)=m_7+0.15m_8$ B balance: $(1-x_{A5})(175)=0.85m_8$ Efficiency: $0.5*x_{A5}(175)=m_7$ Solve 3 equations for 3 unknowns: $m_7=22.8$ kg/hr, $m_8=152.2$ kg/hr, $x_{A5}=0.26$

Overall Balance:

A balance: $0.30m_1=0.15(152.2)+m_9$ Overall mass balance: $m_1=152.2+m_9$ Solve 2 equations for 2 unknowns: $m_1=184.8kg/hr$, $m_9=32.6kg/hr$

Mixer #1 Balance:

A balance: $0.30(184.8)+0.26m_5=0.29m_2$ Overall mass balance: $184.8+m_5=m_2$ Solve 2 equations for 2 unknowns: $m_2=246.4$ kg/hr, $m_5=61.6$ kg/hr

Problem 3:

a.

EMBED Equation.3

	In	Change	Out
N ₂	EMBED Equation.	EMBED Equation.	EMBED Equation.
	3	3	3
H ₂	EMBED Equation.	EMBED Equation.	EMBED Equation.
	3	3	3
NH ₃	EMBED Equation.	EMBED Equation.	EMBED Equation.
	3	3	3
Total			EMBED Equation.
			3

EMBED Equation.3

b. Reactor Ammonia Balance

EMBED Equation.3

Separator Ammonia Balance

EMBED Equation.3