Problem 1:

Consider an infinitesimal volume $d v$ in the trough such that $d v=$ L.X.dy $=$ L. $f(Y) . d y$

We know that $d y=\beta . d t$
so we get $d v=L \cdot f(Y) . \beta \cdot d t$
Also given that $d v / d t=\alpha y^{1 / 2}$

$$
=>\text { L.f(Y). } \beta \cdot \mathrm{dt}=\alpha y^{1 / 2} \cdot \mathrm{dt}
$$

$=>$ L.f(Y). $\beta=\alpha y^{1 / 2}$
$\Rightarrow f(Y)=\alpha y^{1 / 2} / L . \beta$

Problem 2:

a) Mixer \#1: DOF $=4$ unknowns $\left(m_{1}, m_{2}, m_{5}, x_{A 5}\right)-2$ balances $=2$

Separator \#1: DOF $=4$ unknowns $\left(m_{2}, m_{3}, m_{4}, x_{A 5}\right)-2$ balances $=2$

Splitter: DOF $=3$ unknowns $\left(\mathrm{m}_{4}, \mathrm{~m}_{5}, \mathrm{x}_{\mathrm{A} 5}\right)-1$ balance $=2$

Separator \#2: DOF $=3$ unknowns $\left(m_{7}, m_{8}, x_{A 5}\right)-2$ balances -1 efficiency $=0$

Mixer \#2: DOF $=3$ unknowns $\left(m_{3}, m_{7}, m_{9}\right)-1$ balance $=2$

Overall: DOF $=3$ unknowns $\left(m_{1}, m_{8}, m_{9}\right)-2$ balances $=1$
b) Separator \#2 Balance:

A balance: $\mathrm{x}_{\mathrm{A} 5}(175)=\mathrm{m}_{7}+0.15 \mathrm{~m}_{8}$
B balance: $\left(1-\mathrm{x}_{\mathrm{A}}\right)(175)=0.85 \mathrm{~m}_{8}$
Efficiency: $0.5{ }^{*} \mathrm{x}_{\mathrm{A}} 5(175)=\mathrm{m}_{7}$
Solve 3 equations for 3 unknowns: $\mathrm{m}_{7}=22.8 \mathrm{~kg} / \mathrm{hr}, \mathrm{m}_{8}=152.2 \mathrm{~kg} / \mathrm{hr}, \mathrm{x}_{\mathrm{A} 5}=0.26$

Overall Balance:
A balance: $0.30 \mathrm{~m}_{1}=0.15(152.2)+\mathrm{m}_{9}$
Overall mass balance: $\mathrm{m}_{1}=152.2+\mathrm{m}_{9}$
Solve 2 equations for 2 unknowns: $\mathbf{m}_{\mathbf{1}}=\mathbf{1 8 4 . 8} \mathbf{k g} / \mathbf{h r}, \mathbf{m}_{\mathbf{9}}=\mathbf{3 2 . 6} \mathbf{k g} / \mathbf{h r}$

Mixer \#1 Balance:
A balance: $0.30(184.8)+0.26 \mathrm{~m}_{5}=0.29 \mathrm{~m}_{2}$
Overall mass balance: $184.8+\mathrm{m}_{5}=\mathrm{m}_{2}$
Solve 2 equations for 2 unknowns: $\mathrm{m}_{2}=246.4 \mathrm{~kg} / \mathrm{hr}, \mathbf{m}_{\mathbf{5}}=\mathbf{6 1 . 6} \mathbf{k g} / \mathbf{h r}$

Problem 3:

a.

EMBED Equation. 3

	In	Change	Out
N_{2}	EMBED Equation. 3	EMBED Equation. 3	EMBED Equation. 3
H_{2}	EMBED Equation. 3	EMBED Equation. 3	EMBED Equation. 3
NH_{3}	EMBED Equation. 3	EMBED Equation. Total	
EMBED Equation.			
			3

EMBED Equation. 3
b. Reactor Ammonia Balance

Separator Ammonia Balance

EMBED Equation. 3

