1.

is used to lift

$$
\begin{aligned}
& T_{L}=0^{\circ} \mathrm{C} \\
& \varepsilon=0.65 \varepsilon_{\text {Carnot }} \\
& W=m g h, \quad Q_{L}=\text { mise } L_{f}^{\text {water }} \\
& Q_{H}=Q_{2}+W \text {, } \\
& \left(W=\varepsilon Q_{H} \rightarrow Q_{+1}=\frac{1}{\varepsilon} W\right. \\
& \frac{1}{\varepsilon} W=Q_{L}+W \rightarrow Q_{L}=\left(\frac{1}{\varepsilon}-1\right) W=\frac{1-\varepsilon}{\varepsilon} W \\
& Q_{L}=m_{\text {ice }} L_{f}^{\text {water }}=\frac{1-\varepsilon}{\varepsilon} W=\frac{1-\varepsilon}{\varepsilon} m g h \\
& m_{\text {ice }}=\frac{1-\varepsilon}{\varepsilon} \frac{m g h}{L_{f}^{a t a r}}, \quad \varepsilon_{\text {Garnet }}=1-\frac{T_{L}}{T_{\text {Hi }}} \\
& =1-\frac{273 K}{673 K}=0.594 \\
& \varepsilon=0.65 \varepsilon_{\text {Garnet }}=0.386=\varepsilon \\
& m_{\text {ice }}=\frac{1-0.386}{0.386} \frac{1200 \mathrm{~kg} \cdot 9.81 \mathrm{~m} / \mathrm{s}^{2} \cdot 75 \mathrm{~m}}{3.3 \times 10^{5} \mathrm{Jg}} \\
& m_{\text {ice }}=4.2 \mathrm{~kg}
\end{aligned}
$$

Packard Phys.7B MT1
Spring 2008 Solution
Michelle Yong
Problem 2
use energy, not forces. Assume all potential energy of the block becomes heat energy, which raises the temperature of the block + causes volume expansion.

$$
\begin{aligned}
& \text { P.E. block }=m g h=m g L \sin \alpha=Q=m c \Delta T \\
& \rho_{\text {final }}=\frac{m}{V_{\text {final }}} ; V_{\text {final }}=V_{0}(1+\gamma \Delta T) \\
& V_{0}=l_{0}^{3} \\
& \Delta T=\frac{g L \sin \alpha}{c} \Rightarrow V_{\text {final }}=l_{0}^{3}\left(1+\frac{\gamma g L \sin \alpha}{c}\right) \\
& \rho_{\text {final }}=\underbrace{\frac{m}{l_{0}^{3}}}_{\rho_{\text {initial }}}(\underbrace{1+\frac{\gamma g L \sin \alpha}{c}}_{\#<1})^{-1} \\
& \Rightarrow \rho_{\text {final }}<\rho_{\text {initial }}
\end{aligned}
$$

which is what we expect due to heating t volume expansion.

Problem 3
(a)

(b)
(i) For an adiabatic process we can immediately say:

$$
\begin{equation*}
Q_{1 \rightarrow 2}=0 \tag{1}
\end{equation*}
$$

To find $\Delta E_{1 \rightarrow 2}$ it's easiest to use $E=\frac{3}{2} N k_{b} T$ for a monatomic ideal gas:

$$
\begin{align*}
\Delta E_{1 \rightarrow 2} & =\frac{3}{2} N k_{b}\left(T_{2}-T_{1}\right) \tag{2}\\
& =\frac{3}{2}\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \frac{J}{K}\right)(389 K-588 \mathrm{~K}) \tag{3}\\
& =-2.48 \times 10^{3} \mathrm{~J} \tag{4}
\end{align*}
$$

As we expect, $\Delta E_{1 \rightarrow 2}$ is negative because the temperature decreases.
To find the work we'll use the first law:

$$
\begin{align*}
\Delta E_{1 \rightarrow 2} & =Q_{1 \rightarrow 2}-W_{1 \rightarrow 2} \tag{5}\\
\Rightarrow W_{1 \rightarrow 2} & =-\Delta E_{1 \rightarrow 2} \tag{6}\\
& =2.48 \times 10^{3} \mathrm{~J} \tag{7}
\end{align*}
$$

As a check, we see the gas is expanding from $1 \rightarrow 2$ so $W_{1 \rightarrow 2}$ should be positive.
(ii) We can directly calculate the work first:

$$
\begin{align*}
W_{2 \rightarrow 3} & =\int_{V_{2}}^{V_{3}} P d V \tag{8}\\
& =P_{2}\left(V_{3}-V_{2}\right) \tag{9}
\end{align*}
$$

but we don't yet know P_{2} or any of the volumes.
V_{3} is easily found from the ideal gas law:

$$
\begin{align*}
V_{3} & =V_{1}=\frac{N k_{b} T_{1}}{P_{1}} \tag{10}\\
& =\frac{\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \frac{\mathrm{~J}}{K}\right)(588 \mathrm{~K})}{1.01 \times 10^{5} \mathrm{~Pa}} \tag{11}\\
& =4.84 \times 10^{-2} \mathrm{~m}^{3} \tag{12}
\end{align*}
$$

For the adiabatic process we have:

$$
\begin{equation*}
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \tag{13}
\end{equation*}
$$

We can rewrite this in terms of temperatures using the ideal gas law $P=\frac{N k_{b} T}{V}$:

$$
\begin{align*}
T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} & \tag{14}\\
\Rightarrow V_{2} & =\left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{\gamma-1}} V_{1} \tag{15}\\
& =\left(\frac{588 K}{389 K}\right)^{\frac{3}{2}} 4.84 \times 10^{-2} \mathrm{~m}^{3} \tag{16}\\
& =8.99 \times 10^{-2} \mathrm{~m}^{3} \tag{17}
\end{align*}
$$

We can find P_{2} from the ideal gas law:

$$
\begin{align*}
P_{2} & =\frac{N k_{b} T_{2}}{V_{2}} \tag{18}\\
& =\frac{\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}\right)(389 \mathrm{~K})}{\left(8.99 \times 10^{-2} \mathrm{~m}^{3}\right)} \tag{19}\\
& =3.59 \times 10^{4} \mathrm{~Pa} \tag{20}
\end{align*}
$$

So now we can find the work using (9) :

$$
\begin{align*}
W_{2 \rightarrow 3} & =P_{2}\left(V_{3}-V_{2}\right) \tag{21}\\
& =\left(3.59 \times 10^{4} P a\right)\left(4.84 \times 10^{-2} \mathrm{~m}^{3}-8.99 \times 10^{-2} \mathrm{~m}^{3}\right) \tag{22}\\
& =-1.49 \times 10^{3} \mathrm{~J} \tag{23}
\end{align*}
$$

As expected, this work is negative because the gas is being compressed. Again, we can write $E_{2 \rightarrow 3}$ in terms of the temperatures,

$$
\begin{equation*}
\Delta E_{2 \rightarrow 3}=\frac{3}{2} N k_{b}\left(T_{3}-T_{2}\right) \tag{24}
\end{equation*}
$$

To find T_{3} we use the ideal gas law (again!):

$$
\begin{align*}
T_{3} & =\frac{P_{3} V_{3}}{N k_{b}} \tag{26}\\
& =\frac{\left(3.59 \times 10^{4} \mathrm{~Pa}\right)\left(4.84 \times 10^{-2} \mathrm{~m}^{3}\right)}{\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \frac{J}{K}\right)} \tag{27}\\
& =209 \mathrm{~K} \tag{28}
\end{align*}
$$

This makes sense as we know T_{3} has to be less than T_{1} and T_{2} based on the PV diagram.

$$
\begin{align*}
\Delta E_{2 \rightarrow 3} & =\frac{3}{2}\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \frac{J}{K}\right)(209 K-389 K) \tag{29}\\
& =-2.24 \times 10^{3} J \tag{30}
\end{align*}
$$

This should be negative as the temperature is decreasing from $2 \rightarrow 3$.
Finally we get the heat from the first law:

$$
\begin{align*}
Q_{2 \rightarrow 3} & =\Delta E_{2 \rightarrow 3}+W_{2 \rightarrow 3} \tag{31}\\
& =-2.24 \times 10^{3} \mathrm{~J}-1.49 \times 10^{3} \mathrm{~J} \tag{32}\\
& =-3.73 \times 10^{3} \mathrm{~J} \tag{33}
\end{align*}
$$

so heat leaves the gas as it is compressed at constant pressure.
(iii) Now we know everything we need to do $3 \rightarrow 1$

$$
\begin{align*}
& \Delta E_{3 \rightarrow 1}= \frac{3}{2} N k_{b}\left(T_{1}-T_{3}\right) \tag{34}\\
&=\frac{3}{2}\left(6.02 \times 10^{23}\right)\left(1.38 \times 10^{-23} \frac{J}{K}\right)(588-209 \mathrm{~K}) \tag{35}\\
&=4.72 \times 10^{3} \mathrm{~J} \tag{36}\\
& W_{3 \rightarrow 1}=\int_{V_{3}}^{V_{1}} P d V=0 \tag{37}\\
& \tag{39}\\
& Q_{3 \rightarrow 1}=\Delta E_{3 \rightarrow 1}+W_{3 \rightarrow 1} \\
&=4.72 \times 10^{3} \mathrm{~J}
\end{align*}
$$

Because E is a state variable we better check:

$$
\begin{equation*}
\Delta E_{1 \rightarrow 2}+\Delta E_{2 \rightarrow 3}+\Delta E_{3 \rightarrow 1}=-2.48 \times 10^{3} J-2.24 \times 10^{3} J+4.72 \times 10^{3} J=0 \tag{41}
\end{equation*}
$$

Packard MT I Spring 2008
4)

$$
\begin{aligned}
& T_{H}=293 \mathrm{~K} \\
& c_{4} \\
& T_{A 1} T_{M} \\
& T_{L}=77 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{k_{C u} A}{l}\left(T_{H}-T_{M}\right)=\frac{k_{A 1} A}{l}\left(T_{M}-T_{L}\right) \\
& T_{M}=\frac{\frac{A}{l}\left(k_{C u} T_{H}+k_{A 1} T_{L}\right)}{\frac{f}{A}\left(k_{C u}+k_{A l}\right)}=213 K \\
& \frac{d Q}{d t}=3.21 \frac{J}{S}
\end{aligned}
$$

$$
\begin{aligned}
& Q=n L \\
& \frac{d Q}{d t}=\frac{d n}{d t} L=\frac{d m}{d t} \cdot \frac{1}{M_{w}} L=\frac{d V}{d t} \rho \cdot \frac{1}{M_{v}} \cdot L \\
& \frac{d V}{d t}=\frac{d Q}{d t} \frac{M_{w}}{\rho L}=\frac{2.01 \times 10^{-8}}{} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=2.01 \times 10^{-5} \frac{\mathrm{~L}}{\mathrm{~s}}
\end{aligned}
$$

5. If $\ell \geqslant \lambda$, then the sound wont propagate.

$$
\begin{aligned}
& \ell=\frac{1}{4 \pi \sqrt{2} r^{2}(N / V)} \\
& r_{\text {air }} \approx 10^{-10} \mathrm{~m} \\
& \rho=\frac{\text { mass of } N \text { air molecules }}{\text { volume they occupy }}=\frac{\text { mair } \cdot N}{V}
\end{aligned}
$$

$$
\text { So }\left(\frac{N}{V}\right)=\frac{1}{m_{\text {air }}} \rho
$$

$$
\begin{aligned}
& l=\frac{1}{4 \pi \sqrt{2} r_{a i r}^{2}\left(\rho / m_{\text {air }}\right)} \\
& \rho=\rho_{0} e^{-m_{\text {air }} y^{\prime} / k T}
\end{aligned}
$$

$\rho_{0} \cdots$ density at sea level: take this to be at STP

$$
\begin{array}{ll}
\rho_{0}=\frac{N \text { mair }}{V}=\frac{P \text { mair }}{K T} & P V=N k T \\
\text { where } P=101325 \mathrm{~Pa} & \frac{N}{V}=\frac{P}{k T}
\end{array}
$$

cut off value

$$
\begin{gathered}
T=O^{\circ} C=273 k \\
l=\frac{m_{\text {air }}}{4 \pi \sqrt{2} r_{\text {air }}^{2} \rho_{0}} e^{+m_{\text {air }} g y / k T}=\lambda \\
e^{\text {mair }^{2} y / k T}=\frac{4 \pi \sqrt{2} r_{\text {air }}^{2} \rho_{0} \lambda}{m_{\text {air }}} \\
y_{\text {max }}=\frac{k T}{m_{\text {air }}} \ln \left(\frac{4 \pi \sqrt{2} r_{a i r}^{2} \rho_{0} \lambda}{m_{\text {air }}}\right)
\end{gathered}
$$

5 continued:

$$
\begin{aligned}
& y_{\text {max }}=\frac{k T}{m_{\text {air g }}} \ln \left(\frac{4 \pi \sqrt{2} r_{\text {air }}^{2} \rho_{0} \lambda}{m_{\text {air }}}\right) \\
& k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
& T=273 \mathrm{~K} \\
& m_{\text {air }}=29 \mathrm{u} \times 1.66 \times 10^{-27} \frac{\mathrm{~kg}}{\mathrm{u}}=4.81 \times 10^{-26} \mathrm{~kg} \\
& g=9.81 \mathrm{~m} / \mathrm{s}^{2} \\
& r_{\text {air }} \approx 10^{-10} \mathrm{~m} \\
& \rho_{0}=\frac{101325 \mathrm{~Pa} \times 4.81 \times 10^{-26} \mathrm{~kg}}{1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}} \cdot 273 \mathrm{~K}}=1.29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \lambda=0.2 \mathrm{~m}
\end{aligned}
$$

Putting it all together...

$$
\begin{aligned}
& y_{\text {max }}=\frac{1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{k}} \times 273 \mathrm{k}}{4.81 \times 10^{-26} \mathrm{~kg} \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}} \ln \left(\frac{4 \pi \sqrt{2}\left(10^{-10} \mathrm{~m}\right)^{2} \times 1.29 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times 0.2 \mathrm{~m}}{4.81 \times 10^{-26} \mathrm{~kg}}\right) \\
& y_{\text {max }}=110 \mathrm{~km}
\end{aligned}
$$

