Problem 1.
a) Since $u(t)=0 \forall t<0$, we can conclude $h(t)=(t+1) e^{-t} u(t)=0 \quad \forall t<0$ therefore the system is causal.
b) The system is stable, because

$$
\begin{aligned}
\int_{-\infty}^{\infty}|h(t)| d t & =\int_{-\infty}^{\infty}\left|(t+1) e^{-t} u(t)\right| d t \\
& =\int_{0}^{\infty}(t+1) e^{-t} d t \\
& =\int_{0}^{\infty} t e^{-t}+e^{-t} d t \\
& =-\left.e^{-t}\right|_{0} ^{\infty}+\left.\left(-t e^{-t}-e^{-t}\right)\right|_{0} ^{\infty} \\
& =1-0-0+0+1=2<\infty
\end{aligned}
$$

c) We know $h(t)=t e^{-t} u(t)+e^{-t} u(t)$. Also the following transforms hold:

$$
\begin{aligned}
& e^{-t} u(t) \longleftrightarrow \frac{1}{1+j \omega} \\
& t x(t) \longleftrightarrow j \frac{d X(j \omega)}{d \omega} \\
& t e^{-t} u(t) \longleftrightarrow j \frac{-j}{(1+j \omega)^{2}}=\frac{1}{(1+j \omega)^{2}}
\end{aligned}
$$

Then we can conclude:

$$
\begin{aligned}
& h(t)=t e^{-t} u(t)+e^{-t} u(t) \longleftrightarrow H(j \omega)=\frac{1}{(1+j \omega)^{2}}+\frac{1}{1+j \omega} \\
& H(j \omega)=\frac{1}{(1+j \omega)^{2}}+\frac{1}{1+j \omega}=\frac{2+j \omega}{(1+j \omega)^{2}}
\end{aligned}
$$

d) The differential equation relating input and output is:

$$
y(t)+2 \frac{d y(t)}{d t}+\frac{d y^{2}(t)}{d t^{2}}=2 x(t)+\frac{d x(t)}{d t}
$$

2. a) (10 points) Show that the two LTI systems with impulse responses:

$$
h_{1}(t)=t e^{-t} u(t) \quad \text { and } \quad h_{2}(t)=-\frac{1}{2} \delta(t)+e^{-t} u(t)
$$

have the same output in response to the input $x(t)=\cos (t)$.
b) (10 points) Find another LTI system that gives the same response to $x(t)=\cos (t)$ as the two systems above and write its impulse response.

Solution.

(a)

The frequency responses of the two systems are

$$
\begin{aligned}
H_{1}(j \omega) & =\frac{1}{(1+j \omega)^{2}} \\
H_{2}(j \omega) & =-\frac{1}{2}+\frac{1}{1+j \omega}
\end{aligned}
$$

Since $x(t)=\frac{1}{2}\left(e^{j t}+e^{-j t}\right)$, and

$$
x(t)=e^{j \omega t} \rightarrow y(t)=H(j \omega) e^{j \omega t}
$$

for general LTI systems (Lecture 2), we only need to check that

$$
\begin{aligned}
\left.H_{1}(j \omega)\right|_{\omega=1} & =\left.H_{2}(j \omega)\right|_{\omega=1} \\
\left.H_{1}(j \omega)\right|_{\omega=-1} & =\left.H_{2}(j \omega)\right|_{\omega=-1}
\end{aligned}
$$

To this end, we have

$$
\begin{aligned}
\left.H_{1}(j \omega)\right|_{\omega=1} & =\frac{1}{(1+j)^{2}}=-\frac{1}{2} j \\
\left.H_{1}(j \omega)\right|_{\omega=-1} & =\frac{1}{2} j
\end{aligned}
$$

and

$$
\begin{aligned}
\left.H_{2}(j \omega)\right|_{\omega=1} & =-\frac{1}{2}+\frac{1}{1+j}=-\frac{1}{2} j \\
\left.H_{2}(j \omega)\right|_{\omega=-1} & =\frac{1}{2} j
\end{aligned}
$$

thus the outputs of both systems are identical.
(b)

There were many acceptable solutions. One is

$$
h_{3}(t)=\frac{1}{2}\left(h_{1}(t)+h_{2}(t)\right)
$$

Note that $\frac{1}{2 \pi} \sin (t)$ is not correct $(\delta(\omega) \delta(\omega) \neq \delta(\omega))$. Three points were deducted for this answer.
Furthermore, the answer $\frac{1}{2} u(t)+c$ for any $c\left(c=0\right.$ and $c=-\frac{1}{4}$ were popular choices) is also incorrect, as $u(t)$ only has a Fourier transform in a generalized sense. Indeed, it does not make sense to convolve $u(t)$ with $\cos (t)$. However, no points were deducted for this.
3. (20 points) Given the period- 10 sequence $x[n]$ depicted below, determine the following quantities where a_{k} denotes the k th Fourier series coefficient:
a) a_{0},
b) a_{5},
c) $\sum_{k=0}^{9} a_{k}$,
d) $\sum_{k=0}^{10} a_{k}$.

Solution.

a). $a_{0}=\frac{1}{10} \sum_{n=0}^{9} x[n]=\frac{1}{2}$
b). $a_{5}=\frac{1}{10} \sum_{n=0}^{9} x[n](-1)^{n}=\frac{1}{10}$
c). $\sum_{n=0}^{9} a_{k}=x[0]=1$
d). $a_{10}=a_{0}$, so $\sum_{n=0}^{10} a_{k}=\sum_{n=0}^{9} a_{k}+a_{0}=\frac{3}{2}$

Problem 4.

a)

$$
w[n]=\delta[n+2]+\delta[n+1]+\delta[n]+\delta[n-1]+\delta[n-2]= \begin{cases}1 & -2 \leq n \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

b)

$$
H\left(e^{j \omega}\right)=W\left(e^{j \omega}\right) W\left(e^{j \omega}\right)=\left(\frac{\sin (5 \omega / 2)}{\sin (\omega / 2)}\right)\left(\frac{\sin (5 \omega / 2)}{\sin (\omega / 2)}\right)=\left(\frac{\sin (5 \omega / 2)}{\sin (\omega / 2)}\right)^{2}
$$

c) The system is Generalized Linear Phase (GLP) with $\alpha=0$ and $\beta=0$.

$$
\begin{aligned}
H\left(e^{j \omega}\right) & =A\left(e^{j \omega}\right) e^{-j \alpha \omega+j \beta} \\
H\left(e^{j \omega}\right) & =\left(\frac{\sin (5 \omega / 2)}{\sin (\omega / 2)}\right)^{2} e^{-j 0}
\end{aligned}
$$

5. a) (5 points) Give a condition for the 2D signal $x\left[n_{1}, n_{2}\right]$ that guarantees that the 2D Fourier transform $X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)$ is real-valued.
b) (5 points) Give a condition for the 2 D signal $x\left[n_{1}, n_{2}\right]$ that guarantees that the 2D Fourier transform $X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)$ satisfies:

$$
X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=X\left(e^{j \omega_{2}}, e^{j \omega_{1}}\right) \quad \text { for every } \omega_{1} \text { and } \omega_{2}
$$

c) (10 points) Calculate the frequency response of the 2 D moving average filter:

$$
y\left[n_{1}, n_{2}\right]=\frac{1}{9} \sum_{k_{1}=-1}^{1} \sum_{k_{2}=-1}^{1} x\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
$$

Part a)

The 2D Fourier Transform $X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)$ is real valued when $X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=X^{*}\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)$. This means, by definition, that we have

$$
\begin{aligned}
& X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=X^{*}\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right) \Leftrightarrow \\
& \Leftrightarrow \sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}}=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x^{*}\left[n_{1}, n_{2}\right] e^{j \omega_{1} n_{1}} e^{j \omega_{2} n_{2}} \\
& \Leftrightarrow \sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[n_{1}, n_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}}=\sum_{m_{1}=-\infty}^{\infty} \sum_{m_{2}=-\infty}^{\infty} x^{*}\left[-m_{1},-m_{2}\right] e^{-j \omega_{1} m_{1}} e^{-j \omega_{2} m_{2}}
\end{aligned}
$$

where the second equivalence follows from changing variables $\left(m_{i}=-n_{i}, i=1,2\right)$ on the RHS. Thus the equality holds if and only if

$$
x\left[n_{1}, n_{2}\right]=x^{*}\left[-n_{1},-n_{2}\right] \quad \forall n_{1}, n_{2}
$$

This is actually a necessary and sufficient answer. Other valid answers:

1) $x\left[n_{1}, n_{2}\right]$ is real and even symmetric w.r.t. the origin (i.e., $x^{*}\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right]$ and $x\left[n_{1}, n_{2}\right]=x\left[-n_{1},-n_{2}\right]$).
2) $x\left[n_{1}, n_{2}\right]$ is even symmetric along n_{1} and n_{2} (i.e., $x\left[n_{1}, n_{2}\right]=x\left[-n_{1}, n_{2}\right]=x\left[n_{1},-n_{2}\right]$) which is even more restrictive but still valid.
3) Separable (i.e., $x\left[n_{1}, n_{2}\right]=x_{1}\left[n_{1}\right] x_{2}\left[n_{2}\right]$) and $x_{i}\left[n_{i}\right]=x_{i}^{*}\left[-n_{i}\right]$; or separable and both $x_{i}\left[n_{i}\right]$ are real and even symmetric; or separable and both $x_{i}\left[n_{i}\right]$ are real and odd symmetric
Note: many students used even symmetric as a sufficient condition, but without the condition that it is real.

Part b)

By definition, we have

$$
X\left(e^{j \omega_{2}}, e^{j \omega_{1}}\right)=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[n_{1}, n_{2}\right] e^{-j \omega_{2} n_{1}} e^{-j \omega_{1} n_{2}}=\sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} x\left[\tilde{n}_{2}, \tilde{n}_{1}\right] e^{-j \omega_{1} \tilde{n}_{1}} e^{-j \omega_{2} \tilde{n}_{2}}
$$

by change of variables. Thus, if $x\left[n_{1}, n_{2}\right]=x\left[n_{2}, n_{1}\right]$ (i.e., even symmetric w.r.t. the axis $n_{1}=n_{2}$) then $X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=X\left(e^{j \omega_{2}}, e^{j \omega_{1}}\right)$.

Other valid answers:

1) Separable and "equal", i.e., $x\left[n_{1}, n_{2}\right]=x_{1}\left[n_{1}\right] x_{2}\left[n_{2}\right]$ and $x_{1}[n]=x_{2}[n]$. Many people that mentioned separability didn't specify the second part
2) $x\left[n_{1}, n_{2}\right]=x\left[n_{1}\right]+x\left[n_{2}\right]$ is not generic, but indeed sufficient. Note, however, that its FT is given by $X\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=2 \pi X\left(e^{j \omega_{1}}\right) \sum_{k=-\infty}^{\infty} \delta\left(\omega_{2}-2 \pi k\right)+2 \pi X\left(e^{j \omega_{2}}\right) \sum_{k=-\infty}^{\infty} \delta\left(\omega_{1}-2 \pi k\right)$.

Part c)

For the impulse response, we have $x\left[n_{1}, n_{2}\right]=\delta\left[n_{1}, n_{2}\right]$.

$$
h\left[n_{1}, n_{2}\right]=\frac{1}{9} \sum_{k_{1}=-1}^{1} \sum_{k_{2}=-1}^{1} \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right] .
$$

Then

$$
\begin{aligned}
H\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right) & =\frac{1}{9} \sum_{n_{1}=-\infty}^{\infty} \sum_{n_{2}=-\infty}^{\infty} \sum_{k_{1}=-1}^{1} \sum_{k_{2}=-1}^{1} \delta\left[n_{1}-k_{1}, n_{2}-k_{2}\right] e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} \\
& =\frac{1}{9} \sum_{n_{1}=-1}^{1} \sum_{n_{2}=-1}^{1} e^{-j \omega_{1} n_{1}} e^{-j \omega_{2} n_{2}} \\
& =\frac{1}{9} \sum_{n_{1}=-1}^{1} e^{-j \omega_{1} n_{1}} \sum_{n_{2}=-1}^{1} e^{-j \omega_{2} n_{2}} \\
& =\frac{1}{9}\left(e^{-j \omega_{1}}+1+e^{j \omega_{1}}\right)\left(e^{-j \omega_{2}}+1+e^{j \omega_{2}}\right) \\
& =\frac{1}{9}\left(1+2 \cos \left(\omega_{1}\right)\right)\left(1+2 \cos \left(\omega_{2}\right)\right)
\end{aligned}
$$

Another option would be to identify in the 3rd equality the separability of the fourier transform, and that we are dealing with the FT of a rectangle wave with amplitude 1 for $|n| \leq 1$. Therefore,

$$
H\left(e^{j \omega_{1}}, e^{j \omega_{2}}\right)=\frac{1}{9} \sum_{n_{1}=-1}^{1} e^{-j \omega_{1} n_{1}} \sum_{n_{2}=-1}^{1} e^{-j \omega_{2} n_{2}}=\frac{1}{9} \frac{\sin \left(3 \omega_{1} / 2\right)}{\sin \left(\omega_{1} / 2\right)} \frac{\sin \left(3 \omega_{2} / 2\right)}{\sin \left(\omega_{2} / 2\right)}
$$

Comments: We expected the students to see that we are taking the FT of a signal that is real and even symmetric (w.r.t. both the origin and the axis $n_{1}=n_{2}$). Therefore, as seen from parts a) and b), the answer should be simplified to a real-valued function.

