Math 54, Midterm II, F.Rezakhanlou

Each question should be answered directly. Use the back of these sheets if necessary. Justify your assertions; include detailed explanation, and show your work. No aid (including calculators) are allowed.

Your Name:

Your GSI's Name:

## Your Section:

- 1. Find a matrix $Q$ that orthogonally diagonalize the matrix $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$.
- 2. Let $S$ be the span of $\mathbf{w}_{1}=(0,0,1,1), \mathbf{w}_{2}=(2,-2,5,-4)$, $\mathbf{w}_{3}=(2,-2,0,0)$. Use Gram-Schmidt process to find an orthogonal basis for $S$. What is $\operatorname{proj}_{S} \mathbf{a}$ for $\mathbf{a}=(1,0,0,0)$ ?
- 3. (a) For matrices $A_{1}=\left[\begin{array}{cc}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right], \quad A_{2}=\left[\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right]$, define

$$
<A_{1}, A_{2}>=\lambda_{1} a_{1} a_{2}+\lambda_{2} b_{1} b_{2}+\lambda_{3} c_{1} c_{2}+\lambda_{4} d_{1} d_{2}
$$

Show $<A_{1}, A_{2}>$ defines an inner product on the space of $2 \times 2$ matrices $M_{2,2}$, if and only if $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}$ are positive.
(b) Let $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and let $\lambda_{1}=\lambda_{2}=1, \lambda_{3}=\lambda_{4}=2$ in part (a).

Define $V=\{A \mid<A, B>=0\}$. Show that $V$ is a subspace of $M_{2,2}$.
What is the dimension of $V$ ? Find a basis for $V$.

- 4. (True - False)

For each of the questions below, indicate if the statement is true or false. If true, justify (give a brief explanation or quote a relevant theorem from the course), and if false, give a counter-example or explain.
(a) The matrices $A$ and $A^{T}$ have the same eigenvalues.
(b) If $A$ is a square matrix, then $\|A x\|=\left\|A^{T} x\right\|$.
(c) If $A$ is an orthogonal matrix, then the rows of $A$ form an orthonormal basis.
(d) If $A$ is a matrix with eigenvalues $1,2,3$, then $(A+2 I)^{-1}$ has eigenvalues $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$.
(e) There exist vectors $\mathbf{a}$ and $\mathbf{b}$ in $\mathbb{R}^{5}$ such that the linear transformation $T(\mathbf{x})=(\mathbf{x} \cdot \mathbf{a}) \mathbf{b}$ is of rank 3 .

Blank Page

