November 17th, 2014

Chemistry 120A 2nd Midterm

1. (36 pts) For this question, recall the binding energy levels of the Hydrogenic Hamiltonian (1-electron):

$$E_n = -m_e Z^2 e^4 / 2\hbar^2 n^2 = -E_0 Z^2 / n^2, \quad n = 1, 2, 3, \dots$$

where Ze is the nuclear charge, m_e is the electron mass, and $E_0 = m_e e^4/2\hbar^2 \approx 13.7$ eV.

The eigenstates of the H-atom are $\psi_{n,l,m}(r,\theta,\phi) = R_{n,l}(r) Y_{l,m}(\theta,\phi)$. In these states, the eigenvalues of the operators for square orbital angular momentum, L^2 , and for the z-component of angular momentum, L_z , are $\hbar^2 l(l+1)$ and $\hbar m$, respectively. The quantum number, n, can be described in terms of the radial quantum number, n_r , and the quantum of angular momentum, l, by: $n = n_r + l + 1$

If a Hydrogenic atom is subject to a magnetic field in the z-direction, the additional term in the Hamiltonian is $E_{\text{mag}} = +\mu_M L_z \mathcal{B}$ where μ_M is the magnitude of the orbital magnetic moment.

- a) Circle those of the following that are true about the 1-electron atom. Ignore the spin of the individual electron in this problem.
 - i. The binding energy of an electron in any ψ_{nlm} increases as Z^2 .
 - ii. The radial distribution function of the ψ_{310} eigenstate contains two nodes.
 - iii. The ψ_{200} eigenstate can be described by a vibrationally excited state of the bare (l=0) coulomb potential.
 - iv. The square of the total orbital angular momentum of an electron in ψ_{322} is larger than the square of its z-component by $2\hbar^2$.
 - v. For an electron in any ψ_{nlm} , the energy, magnitude of angular momentum, and angular momentum in the z-direction are conserved.

- vi. A magnetic field applied in the z-direction would lower the energy of an electron in ψ_{311} .
- b) Circle those of the following that are true for a two-electron He atom, including coulomb repulsion between the electrons and spin.
 - i. The spatial wave function of the ground state is described by $\Psi = \psi_{100}(r_1, \theta_1, \phi_1) \times \psi_{100}$ (r_2, θ_2, ϕ_2) with an effective Z less than 2.
 - ii. The total binding energy of two electrons in the ground state is larger than $8E_0$.
 - iii. The spatial wave function of an excited state of Helium can be described by $\Psi = \psi_{100}(r_1, \theta_1, \phi_1) \times \psi_{210}(r_2, \theta_2, \phi_2)$.
 - iv. The ionization energy of pulling an electron out of the 1s2p configuration involving single electron orbitals ψ_{100} and ψ_{210} is close to $E_0/4$.
 - v. This is a legitimate slater determinant of two electrons in the ground state, where α denotes spin up and β denotes spin down.

 $\begin{vmatrix} \psi_{100} \alpha(1) & \psi_{100} \alpha(1) \\ \psi_{100} \alpha(2) & \psi_{100} \alpha(2) \end{vmatrix}$

vi. The lowest energy state with a 1s2s configuration involving single electron orbitals ψ_{100} and ψ_{200} is a spin triplet.

2. (65 pts) This problem concerns the behavior of an electron moving on a ring in the presence of a small, perturbative potential $V(\phi)$ (see Figure below) that localizes the particle into different sections of the ring. The Hamiltonian for the particle in a ring is:

$$\mathcal{H}_0 = -\frac{\hbar^2}{2I} \frac{d^2}{d\phi^2}$$

where $I = m_e R^2$ is the moment of inertia for a ring of radius R and electron of mass m_e .

The orthonormal eigen-functions for this Hamiltonian are

$$\psi_m(\phi) = \frac{1}{\sqrt{2\pi}} e^{im\phi}, \ m = 0, \pm 1, \pm 2, \dots,$$

with corresponding energy levels

$$E_m = (\hbar^2/2I) m^2, \quad m = 0, \pm 1, \pm 2, \dots$$

With the added perturbation, the full Hamiltonian is:

$$\mathcal{H} = \mathcal{H}_0 + V(\phi) \,,$$

where

$$V(\phi) = 4\epsilon \sin^2(\phi) = -\epsilon(e^{i2\phi} + e^{-i2\phi} - 2)$$

and ϵ is small, positive, and has the units of energy.

In calculating matrix elements below, its useful to remember the following for the particle in a ring eigenfunctions:

$$\frac{1}{2\pi} \int_0^{2\pi} d\phi \, e^{i(m-m')\phi} = \delta_{m,m'}$$

In the following, express your answers in terms of \hbar , ϵ , ϕ , and I.

- (a) Calculate the first order energy correction to the m=0 state due to $V(\phi)$.
- (b) Now consider the two degenerate $m=\pm 1$ levels of the unperturbed Hamiltonian. To find out how $V(\phi)$ affects them, construct a 2x2 Hamiltonian matrix using these two levels as the entire basis set (e.g., 1st order degenerate perturbation theory). What are the new energy levels?

- (c) To find out how the unperturbed $m=\pm 1$ wavefunctions get modified, solve for the eigenvectors of the 2x2 Hamiltonian matrix of part(b). State the wave function that corresponds to each new energy level in the presence of $V(\phi)$.
- (d) For the higher energy wave function found in part (c), what is the average (expectation) value of the potential energy? Referring to the graph of $V(\phi)$ below, describe in your own words why this wave function represents the higher energy state.
- (e) Which, if any, of the higher lying, degenerate states of the particle in the ring (m = $\pm 2, \pm 3, \pm 4,...$) get split by V(ϕ) within 1st order degenerate perturbation theory?
- (f) Consider two electrons in the unperturbed $m=\pm 1$ wavefunctions. Form a wavefunction of one allowed triplet state of the two electrons after the perturbation $V(\phi)$. To construct your answer, use the analytical form of the wavefunctions you found in part (c) with angle ϕ_1 for electron 1 and angle ϕ_2 for electron 2. Also, use α to denote spin up, and β for spin down.