Chemistry 120A 2nd Midterm

1. (36 pts) For this question, recall the binding energy levels of the Hydrogenic Hamiltonian (1-electron):

$$
E_{n}=-m_{e} Z^{2} e^{4} / 2 \hbar^{2} n^{2}=-E_{0} Z^{2} / n^{2}, \quad n=1,2,3, \ldots
$$

where $Z e$ is the nuclear charge, m_{e} is the electron mass, and $E_{0}=$ $m_{e} e^{4} / 2 \hbar^{2} \approx 13.7 \mathrm{eV}$.

The eigenstates of the H -atom are $\psi_{n, l, m}(r, \theta, \phi)=R_{n, l}(r) Y_{l, m}(\theta, \phi)$. In these states, the eigenvalues of the operators for square orbital angular momentum, L^{2}, and for the z-component of angular momentum, L_{z}, are $\hbar^{2} l(l+1)$ and $\hbar m$, respectively. The quantum number, n , can be described in terms of the radial quantum number, n_{r}, and the quantum of angular momentum, l , by: $\mathrm{n}=\mathrm{n}_{r}+\mathrm{l}+1$

If a Hydrogenic atom is subject to a magnetic field in the z -direction, the additional term in the Hamiltonian is $E_{\text {mag }}=+\mu_{M} L_{z} \mathcal{B}$ where μ_{M} is the magnitude of the orbital magnetic moment.
a) Circle those of the following that are true about the 1-electron atom. Ignore the spin of the individual electron in this problem.
i. The binding energy of an electron in any $\psi_{n l m}$ increases as Z^{2}.
ii. The radial distribution function of the ψ_{310} eigenstate contains two nodes.
iii. The ψ_{200} eigenstate can be described by a vibrationally excited state of the bare $(\mathrm{l}=0)$ coulomb potential.
iv. The square of the total orbital angular momentum of an electron in ψ_{322} is larger than the square of its z-component by $2 \hbar^{2}$.
v. For an electron in any $\psi_{n l m}$, the energy, magnitude of angular momentum, and angular momentum in the z-direction are conserved.
vi. A magnetic field applied in the z-direction would lower the energy of an electron in ψ_{311}.
b) Circle those of the following that are true for a two-electron He atom, including coulomb repulsion between the electrons and spin.
i. The spatial wave function of the ground state is described by $\Psi=\psi_{100}\left(r_{1}, \theta_{1}, \phi_{1}\right) \times \psi_{100}\left(r_{2}, \theta_{2}, \phi_{2}\right)$ with an effective Z less than 2.
ii. The total binding energy of two electrons in the ground state is larger than $8 E_{0}$.
iii. The spatial wave function of an excited state of Helium can be described by $\Psi=\psi_{100}\left(r_{1}, \theta_{1}, \phi_{1}\right) \times \psi_{210}\left(r_{2}, \theta_{2}, \phi_{2}\right)$.
iv. The ionization energy of pulling an electron out of the $1 s 2 p$ configuration involving single electron orbitals ψ_{100} and ψ_{210} is close to $E_{0} / 4$.
v. This is a legitimate slater determinant of two electrons in the ground state, where α denotes spin up and β denotes spin down.

$$
\left|\begin{array}{ll}
\psi_{100} \alpha(1) & \psi_{100} \alpha(1) \\
\psi_{100} \alpha(2) & \psi_{100} \alpha(2)
\end{array}\right|
$$

vi. The lowest energy state with a $1 s 2 s$ configuration involving single electron orbitals ψ_{100} and ψ_{200} is a spin triplet.
2. (65 pts) This problem concerns the behavior of an electron moving on a ring in the presence of a small, perturbative potential $V(\phi)$ (see Figure below) that localizes the particle into different sections of the ring. The Hamiltonian for the particle in a ring is:

$$
\mathcal{H}_{0}=-\frac{\hbar^{2}}{2 I} \frac{d^{2}}{d \phi^{2}}
$$

where $I=m_{e} R^{2}$ is the moment of inertia for a ring of radius R and electron of mass m_{e}.

The orthonormal eigen-functions for this Hamiltonian are

$$
\psi_{m}(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}, \quad m=0, \pm 1, \pm 2, \ldots
$$

with corresponding energy levels

$$
E_{m}=\left(\hbar^{2} / 2 I\right) m^{2}, \quad m=0, \pm 1, \pm 2, \ldots
$$

With the added perturbation, the full Hamiltonian is:

$$
\mathcal{H}=\mathcal{H}_{0}+V(\phi),
$$

where

$$
V(\phi)=4 \epsilon \sin ^{2}(\phi)=-\epsilon\left(e^{i 2 \phi}+e^{-i 2 \phi}-2\right)
$$

and ϵ is small, positive, and has the units of energy.
In calculating matrix elements below, its useful to remember the following for the particle in a ring eigenfunctions:

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi e^{i\left(m-m^{\prime}\right) \phi}=\delta_{m, m^{\prime}}
$$

In the following, express your answers in terms of \hbar, ϵ, ϕ, and I.
(a) Calculate the first order energy correction to the $\mathrm{m}=0$ state due to $\mathrm{V}(\phi)$.
(b) Now consider the two degenerate $\mathrm{m}= \pm 1$ levels of the unperturbed Hamiltonian. To find out how $\mathrm{V}(\phi)$ affects them, construct a 2×2 Hamiltonian matrix using these two levels as the entire basis set (e.g., 1st order degenerate perturbation theory). What are the new energy levels?
(c) To find out how the unperturbed $\mathrm{m}= \pm 1$ wavefunctions get modified, solve for the eigenvectors of the 2×2 Hamiltonian matrix of part(b). State the wave function that corresponds to each new energy level in the presence of $\mathrm{V}(\phi)$.
(d) For the higher energy wave function found in part (c), what is the average (expectation) value of the potential energy? Referring to the graph of $V(\phi)$ below, describe in your own words why this wave function represents the higher energy state.
(e) Which, if any, of the higher lying, degenerate states of the particle in the ring ($\mathrm{m}= \pm 2, \pm 3, \pm 4, \ldots$) get split by $\mathrm{V}(\phi)$ within 1 st order degenerate perturbation theory?
(f) Consider two electrons in the unperturbed $\mathrm{m}= \pm 1$ wavefunctions. Form a wavefunction of one allowed triplet state of the two electrons after the perturbation $\mathrm{V}(\phi)$. To construct your answer, use the analytical form of the wavefunctions you found in part (c) with angle ϕ_{1} for electron 1 and angle ϕ_{2} for electron 2. Also, use α to denote spin up, and β for spin down.

