Problem 1

a) Note that conductivity is the inverse of resistivity, $\sigma=1 / \rho$. The relationship between the resistivity ρ and resistance R for a resistor of constant cross sectional area is given on the equation sheet,

$$
R=\rho \frac{l}{A}=\frac{1}{\sigma} \frac{l}{A} .
$$

Since the area of the wire is $A=\pi d^{2} / 4$, and replacing $V=I R$ from Ohm's law,

$$
\sigma=\frac{4 l I}{\pi d^{2} V}
$$

b) Since the temperature coefficient of resistivity is negative, carbon is not a metal.
c) The magnitude of the current density \vec{j} is given in terms of the number of protons N, the charge of each proton $+e$, the speed v, and the total volume of the beam $V=2 \pi R A$ by

$$
|\vec{j}|=n e v=\frac{N}{2 \pi R A} e v
$$

The current I of the beam is found by integrating over a circular disc in the torus, $I=\int \vec{j} \cdot d \vec{A}$. Here j is parallel to $d \vec{A}$ and constant over the circular disc so that

$$
I=j A=\frac{N e v}{2 \pi R}
$$

Solving for N we get the desired expression,

$$
N=\frac{2 \pi R I}{e v}
$$

d) Again using the relation between resistance and resistivity for a wire as in (a) we get

$$
\begin{aligned}
R_{A l} & =\frac{\rho_{A l} L}{\pi d^{2} / 4} \\
R_{C u} & =\frac{\rho_{C u} L}{\pi d^{2} / 4}
\end{aligned}
$$

Arranging these in series gives a total (equivalent) resistance

$$
R=R_{A l}+R_{C u}=\frac{4\left(\rho_{A l}+\rho_{C u}\right) L}{\pi d^{2}}
$$

Finally, from Ohm's law $I=V / R$ we find

$$
I=\frac{\pi d^{2} V}{4\left(\rho_{A l}+\rho_{C u}\right) L}
$$

1 Problem 2

A non-conducting sphere of radius R_{1} is surrounded by a larger but ultrathin spherical shell of radius R_{2}. The volume charge density of the inner sphere is $\rho_{1}(r)=\operatorname{ar}(a>0)$

1.1 Part A

Calculate the surface charge density σ_{2} of the outer sphere such that its net charge is twice that of the inner sphere. The total charge on the sphere is found by integrating the charge density over the volume of the sphere.

$$
Q_{1}=\int \rho_{1} d V=4 \pi \int_{0}^{R_{1}} r^{3} d r=\pi a R_{1}^{4}
$$

The total charge Q_{2} on the shell is $2 Q_{1}$.

$$
Q_{2}=2 \pi a R_{1}^{4}
$$

The surface charge density of the shell is given by the charge on the shell divided by the area of the shell.

$$
Q_{2}=\sigma_{2} 4 \pi R_{2}^{2}
$$

Solving for σ_{2} :

$$
\sigma_{2}=\frac{a R_{1}^{4}}{2 R_{2}^{2}}
$$

1.2 Part B

Calculate the electric field created at any point by this charge distribution.
Inside the sphere $\left(\left(r<R_{1}\right)\right.$,

$$
\int \vec{E} \cdot d \vec{A}=q_{e n c} / \epsilon_{0}=\frac{1}{\epsilon_{0}} \int \rho_{1} d V
$$

Using a spherical gaussian surface, and noting the constant electric field across the surface, and that E and $d a$ are both radially directed. This evaluates to:

$$
\vec{E}=\frac{a r^{2}}{4 \epsilon_{0}} \hat{r}
$$

For a Gaussian surface between the two distributions $R_{1}<r<R_{2}$, we again note that \vec{E} and $d \vec{a}$ are both radially directed, and that $|E|$ is constant across the Gaussian surface. From Gauss' law we can calculate

$$
\vec{E}=\frac{a R_{1}^{4}}{4 \pi \epsilon_{0} r^{2}} \hat{r}
$$

Outside the spherical shell $r>R_{2}$ we know that the total charge enclosed within a Gaussian surface is $3 Q_{1}$. Using a spherical gaussian surface concentric with the sphere and shell, we note that both the unit vector for the surface area and the electric field are radially directed, again allowing for the simplification of $\int \vec{E} \cdot d \vec{a}=E A$. Additionally rotational symmetry demands that the magnitude of E is constant across the Gaussian sphere.

$$
\vec{E}=\frac{3 a R_{1}^{4}}{4 \epsilon_{0} r^{2}} \hat{r}
$$

1.3 Part C

Make a qualitative plot of the electric field as a function of the distance from the center of the spheres.

1.4 Part D

Set $V=0$ at infinity and calculate the electric potential created at any point.
Outside the shell, $r>R_{2}$, the potential of this charge distribution resembles that of a point charge with a charge of $3 \pi a R_{1}^{4}$. The potential is then given by

$$
V\left(r>R_{2}\right)=\frac{3 a R_{1}^{4}}{4 \epsilon_{0} r}
$$

At the shell we find

$$
V\left(R_{2}\right)=\frac{3 a R_{1}^{4}}{4 \epsilon_{0} R_{2}}
$$

For $R_{1}<r<R_{2}$ the electric potential of a point at radius r is given by $V(r)=V\left(R_{2}\right)+\Delta V$. Again ΔV resembles a point charge:

$$
\Delta V=\frac{\pi a R_{1}^{4}}{4 \pi \epsilon_{0} r}
$$

The potential is then given by

$$
V\left(R_{1}<r<R_{2}\right)=\frac{3 a R_{1}^{4}}{4 \epsilon_{0} R_{2}}+\frac{a R_{1}^{4}}{4 \epsilon_{0} r}
$$

At $r=R_{1}$

$$
V\left(R_{1}\right)=\frac{3 a R_{1}^{4}}{4 \epsilon_{0} R_{2}}+\frac{a R_{1}^{4}}{4 \epsilon_{0} R_{1}}
$$

For $r<R_{1}$

$$
V\left(r<R_{1}\right)=\Delta V+V\left(R_{1}\right)
$$

Where

$$
\Delta V=\int \vec{E} \cdot d \vec{l}
$$

Setting $d \vec{l}$ to be a radial path from R_{1} to r and plugging in the expression for field from Part B

$$
\Delta V=\int \vec{E} \cdot d \vec{l}=-\int_{R_{1}}^{r} \frac{a r^{2}}{4 \epsilon_{0}} d r=\frac{a R_{1}^{3}}{12 \epsilon_{0}}-\frac{a r^{3}}{12 \epsilon_{0}}
$$

Thus

$$
V\left(r<R_{1}\right)=\frac{a R_{1}^{3}}{12 \epsilon_{0}}-\frac{a r^{3}}{12 \epsilon_{0}}+\frac{3 a R_{1}^{4}}{4 \epsilon_{0} R_{2}}+\frac{a R_{1}^{4}}{4 \epsilon_{0} R_{1}}=\frac{a R_{1}^{3}}{3 \epsilon_{0}}+\frac{3 a R_{1}^{4}}{4 \epsilon_{0} R_{2}}-\frac{a r^{3}}{12 \epsilon_{0}}
$$

Problem 3

a) By symmetry, the electric field should point radially outward and depend only on the distance from the center of the spheres. In other words, we can write $\vec{E}=E(r) \hat{r}$. We can then apply Gauss's law using a sphere of radius r around the center of the physical spheres as our Gaussian surface,

$$
\oint \vec{E} \cdot d \vec{A}=|\vec{E}| 4 \pi r^{2}=\frac{q_{e n}}{\epsilon_{0}}
$$

For $R_{1}<r<R_{2}$, the enclosed charge is $q_{e n}=Q$ and the electric field is given by

$$
\vec{E}=\frac{Q}{4 \pi \epsilon_{0} r^{2}} \hat{r}
$$

b) Integrating radially outward along $d \vec{l}=\hat{r} d r$ from $r=R_{1}$ to $r=R_{2}$

$$
\begin{aligned}
V\left(R_{2}\right)-V\left(R_{1}\right) & =-\int_{R_{1}}^{R_{2}}\left(\frac{Q}{4 \pi \epsilon_{0}} \frac{1}{r^{2}} \hat{r}\right) \cdot r d r \\
& =\frac{-Q}{4 \pi \epsilon_{0}} \int_{R_{1}}^{R_{2}} \frac{1}{r^{2}} d r \\
& =\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{R_{2}}-\frac{1}{R_{1}}\right)
\end{aligned}
$$

This is a negative quantity because $R_{2}>R_{1}$, so if we want the magnitude of the potential difference we should write

$$
V=|\Delta V|=\frac{Q}{4 \pi \epsilon_{0}} \frac{R_{2}-R_{1}}{R_{1} R_{2}}
$$

c) By definition,

$$
C \equiv \frac{Q}{V}=\frac{Q}{\frac{Q}{4 \pi \epsilon_{0}} \frac{R_{2}-R_{1}}{R_{1} R_{2}}}=\frac{4 \pi \epsilon_{0} R_{1} R_{2}}{R_{2}-R_{1}}
$$

The capacitance must be positive, so it's good to check the sign. Since $R_{2}>R_{1}$, this expression is indeed positive.
d) The potential energy of a capacitor is given on the note sheet as

$$
U=\frac{1}{2} \frac{Q^{2}}{C}
$$

We can substitute $Q=C V$ to write this as

$$
U=\frac{1}{2} C V^{2}
$$

The voltage is held constant by the battery as the dielectric is inserted. Denoting the capacitance without the dielectric as C_{0}, we know from the problem statement and the
definition of capacitance that the battery must have $V=Q / C_{0}$. This means that when this particular battery is hooked up to a capacitor,

$$
U=\frac{1}{2} C\left(\frac{Q}{C_{0}}\right)^{2}
$$

Filling a capacitor completely with a dielectric increases the capacitance by a factor of the dielectric constant K, so $C=K C_{0}$. Making this substitution gives

$$
U=\frac{1}{2} K C_{0}\left(\frac{Q}{C_{0}}\right)^{2}=\frac{K Q^{2}}{2 C_{0}}
$$

Plugging in C_{0} from part (c) gives an expression in terms of the given parameters,

$$
U=\frac{K Q^{2}}{8 \pi \epsilon_{0}} \frac{R_{2}-R_{1}}{R_{1} R_{2}}
$$

(a) Call the current going through resistor $R_{1} I_{1}$, the current going through resistor $R_{2} I_{2}$, and the current going through the capacitor I_{3}. I first start by writing Kirchoff's rules:

$$
\begin{array}{r}
V_{0}-I_{1} R_{1}-I_{2} R_{2}=0 \\
I_{1}=I_{2}+I_{3} \\
V_{0}-I_{1} R_{1}-\frac{Q_{3}}{C}=0
\end{array}
$$

Replacing I_{1} in the first equation:

$$
\begin{array}{r}
V_{0}-I_{2} R_{1}-I_{3} R_{1}-I_{2} R_{2}=0 \\
I_{2}=\frac{V_{0}-I_{3} R_{1}}{R_{1}+R_{2}}
\end{array}
$$

Which gives:

$$
\begin{aligned}
V_{0}-I_{2} R_{1}-I_{3} R_{1}-\frac{Q_{3}}{C} & =0 \\
V_{0}-\frac{V_{0}-I_{3} R_{1}}{R_{1}+R_{2}} R_{1}-I_{3} R_{1}-\frac{Q_{3}}{C} & =0 \\
V_{0}-\frac{V_{0} R_{1}}{R_{1}+R_{2}}+Q_{3}^{\prime}(t)\left(\frac{R_{1}^{2}}{R_{1}+R_{2}}-R_{1}\right)-\frac{Q_{3}(t)}{C} & =0 \\
\frac{V_{0} R_{2}}{R_{1}+R_{2}}-Q_{3}^{\prime}(t)\left(\frac{R_{1} R_{2}}{R_{1}+R_{2}}\right)-\frac{Q_{3}(t)}{C} & =0 \\
\frac{V_{0}}{R_{1}}-\frac{Q_{3}(t)}{C} \frac{R_{1}+R_{2}}{R_{1} R_{2}} & =Q_{3}^{\prime}(t)
\end{aligned}
$$

The solution to this is on the equation sheet:

$$
Q_{3}(t)=V_{0} C \frac{R_{2}}{R_{1}+R_{2}}\left(1-e^{-\frac{R_{1}+R_{2}}{C R_{1} R_{2}} t}\right)
$$

Here, I used the fact that the capacitor is initially uncharged so $Q_{3}(0)=0$.
Thus, the voltage across the capacitor is:

$$
V_{C}(t)=\frac{Q_{3}(t)}{C}=V_{0} \frac{R_{2}}{R_{1}+R_{2}}\left(1-e^{-\frac{R_{1}+R_{2}}{C R_{1} R_{2}} t}\right)
$$

(b) The time constant is the inverse of the factor that multiplies the exponent. Thus:

$$
\tau=\frac{R_{1} R_{2}}{R_{1}+R_{2}} C
$$

(c) The maximum charge is the maximum the charge function can possibly take. The function is bounded by the prefactor, so:

$$
Q_{\max }=V_{0} C \frac{R_{2}}{R_{1}+R_{2}}
$$

(d) When $t \ll \tau$, a lot of current will flow into the capacitor to charge it. This is a path of less resistance than going through the resistor, so all current will go through the capacitor. The capacitor then has all the current flowing through it, so it essentially acts like a wire. Thus, the equivalent circuit is just the battery and the R_{1} resistor. (This can also be seen by taking the derivative of the expression in part a)
When $t \gg \tau$, the capacitor will be fully charged. This means it accepts no more current, and essentially acts like it has infinite resistance. Thus, now the path of least resistance is through the R_{2} resistor, so the equivalent circuit is the battery and both the resistors.

1 Problem 5

1.1 Part A

What are the various methods you can effectively use in this case to calculate the electric field produced by this charge distribution on the symmetry axis (x-axis) of the cylinder? Explain.

The electric field can be calculated through Coulombs Law. The charge distribution may be taken to be the sum of many infinitesimal point charge each contributing a small $d E$ to the total field. There is not enough symmetry in this problem to use Gauss's Law to find the electric field.

1.2 Part B

Using Coulombs law, calculate the electric field created on the symmetry axis by an infinitesimally thin ring of width dl carrying charge $d q$.

A infinitesimally thin ring of width $d l$ with charge $d q$ carries a surface charge σ such that $d q=\sigma 2 \pi R d l$. A small piece of this ring creates a field

$$
d \vec{E}=\frac{d q}{4 \pi \epsilon_{0}}=\frac{\sigma 2 \pi R d l}{4 \pi \epsilon_{0} r^{2}} \hat{r} .
$$

From the symmetry of the ring, it is evident that along the central axis of the ring (in this case the x-axis), the only non-zero component of the electric field is that which is parallel with the central axis. Specifically, for the coordinate system defined in Figure 2, E_{x} is the only non-zero component of the field. Defining θ as the angle between the vector \vec{r} and x axis, it is clear that

$$
E_{x}=|E| \cos (\theta)
$$

where $\cos \theta=x / r$ and $r=\sqrt{x^{2}+R^{2}}$
The E field for a single ring above the symmetry axis is thus given by

$$
E_{x}=\frac{d q}{4 \pi \epsilon_{0}}=\frac{\sigma 2 \pi R d l}{4 \pi \epsilon_{0} r^{2}} \cos (\theta)=\frac{\sigma 2 \pi R d l x}{4 \pi \epsilon_{0}\left(x^{2}+R^{2}\right)^{3 / 2}} .
$$

1.3 Part C

Using part (b), calculate the electric field produced by the entire charge distribution at any point M on the symmetry axis.

With the substitution $x \rightarrow x-l$, the expression Part B can be integrated in $d l$ over the length of the cylinder to calculate the total field at point M at a distance x from the origin.

$$
E_{x}=\int d E_{x}=\int \frac{d q}{4 \pi \epsilon_{0} r^{2}} \cos (\theta)=\int_{0}^{L} \frac{\sigma R d l}{2 \epsilon_{0} r^{2}} \cos (\theta)=\int_{0}^{L} \frac{\sigma R d l}{2 \epsilon_{0} r^{2}} \frac{(x-l)}{r}
$$

$$
E_{x}=\int_{0}^{L} \frac{\sigma R d l}{2 \epsilon_{0}\left((x-l)^{2}+R^{2}\right)^{3 / 2}}(x-l)
$$

Letting $x-l=u$ and $d u=-d l$

$$
E_{x}=\int_{l=0}^{L} \frac{-\sigma R u d u}{2 \epsilon_{0}\left((u)^{2}+R^{2}\right)^{3 / 2}}
$$

Letting $v=\left(u^{2}+R^{2}\right)$ and $d v / 2=u d u$

$$
E_{x}=\int_{l=0}^{L} \frac{\sigma R d v}{4 \epsilon_{0} v^{3 / 2}}=\left.\frac{\sigma R}{2 \epsilon_{0}} v^{-1 / 2}\right|_{l=0} ^{L}=\frac{\sigma R}{2 \epsilon_{0}}\left(\frac{R}{\left((x-L)^{2}+R^{2}\right)^{1 / 2}}-\frac{R}{\left((x)^{2}+R^{2}\right)^{1 / 2}}\right)
$$

Or, setting $\sin \theta_{1}=\frac{R}{\left((x-L)^{2}+R^{2}\right)^{1 / 2}}$ and $\sin \theta_{0}=\frac{R}{\left((x)^{2}+R^{2}\right)^{1 / 2}}$

$$
E_{x}=\frac{\sigma}{2 \epsilon_{0}}\left(\sin \theta_{1}-\sin \theta_{0}\right)
$$

1.4 Part D

What is the limit when L?? How could you get this result much more easily?
Taking the limit of an infinitely long forces the field along the interior axis to zero. This result can be obtained through noting the symmetry of the infinite cylinder. At any point M on the axis of the cylinder, there is an infinite amount of charge on either side of the point, effectively canceling the E_{x} field component. Mathematically, this can be observed through taking the limits $\lim _{\theta_{0} \rightarrow \pi}$ and $\lim _{\theta_{1} \rightarrow 0}$ of

$$
E_{x}=\frac{\sigma}{2 \epsilon_{0}}\left(\sin \theta_{1}-\sin \theta_{0}\right)
$$

In which case it is clear that E_{x} is zero.

