University of California, Berkeley

Department of Mathematics
$12^{\text {th }}$ April, 2013, 12:10-12:55 pm
MATH 53-Test \#3

Last Name: Solutions

First Name: \qquad
Student Number: \qquad

What is your discussion section number (201-215)? \qquad
What is the name of your GSI?

Record your answers below each question in the space provided. Left-hand pages may be used as scrap paper for rough work. If you want any work on the left-hand pages to be graded, please indicate so on the right-hand page.

Partial credit will be awarded for partially correct work, so be sure to show your work, and include all necessary justifications needed to support your arguments.
There is a list of potentially useful formulas available on the last page of the exam.

For grader's use only:

Page	Grade
1	$/ 2$
2	$/ 14$
3	$/ 12$
4	$/ 12$
Total	$/ 40$

1. Evaluate the integral $\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-y^{2}} d y d x$.
(You can do it without reversing the order of integration, but it's not recommended.)
The region of integration is the top half of the unit disk. As a Type II region it's given by $0 \leq y \leq 1$ with $-\sqrt{1-y^{2}} \leq x \leq \sqrt{1-y^{2}}$, so

$$
\begin{aligned}
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-y^{2}} d y d x & =\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \sqrt{1-y^{2}} d x d y \\
& =\int_{0}^{1} 2\left(1-y^{2}\right) d y \\
& =2(1-1 / 3)=4 / 3
\end{aligned}
$$

2. The integral below computes the area of a region. Sketch the area, and compute it by converting to polar coordinates.

$$
\int_{-2}^{-1} \int_{-x}^{\sqrt{8-x^{2}}} d y d x+\int_{-1}^{1} \int_{\sqrt{2-x^{2}}}^{\sqrt{8-x^{2}}} d y d x+\int_{1}^{2} \int_{x}^{\sqrt{8-x^{2}}} d y d x
$$

The region given by the above integral lies above the x-axis between the circles $x^{2}+y^{2}=2$ and $x^{2}+y^{2}=8$ and the lines $y= \pm x$.

In polar coordinates this region is given by $\pi / 4 \leq \theta \leq 3 \pi / 4$ and $\sqrt{2} \leq r \leq 2 \sqrt{2}$, so we have

$$
\begin{aligned}
A & =\int_{\pi / 4}^{3 \pi / 4} \int_{\sqrt{2}}^{2 \sqrt{2}} r d r d \theta \\
& =\frac{\pi}{2}\left(\frac{8-2}{2}\right) \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

3. Evaluate the integral $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$ by converting to polar coordinates.

The half-circle $y=\sqrt{2 x-x^{2}}$, or $x^{2}+y^{2}=2 x$ (which becomes $(x-1)^{2}+y^{2}=1$ after completing the square) is given in polar coordinates by $r^{2}=2 r \cos \theta$, or $r=2 \cos \theta$. Since the region of integration is in the first quadrant, we have $0 \leq \theta \leq \pi / 2$, so

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x & =\int_{0}^{\pi / 2} \int_{0}^{2 \cos \theta} r^{2} d r d \theta \\
& =\frac{8}{3} \int_{0}^{\pi / 2} \cos ^{3} \theta d \theta \\
& =\frac{8}{3} \int_{0}^{\pi} 2\left(1-\sin ^{2} \theta\right) \cos \theta d \theta \\
& =\frac{8}{3} \int_{0}^{1}\left(1-u^{2}\right) d u \\
& =\frac{8}{3}\left(1-\frac{1}{3}\right) \\
& =\frac{16}{9}
\end{aligned}
$$

4. Find the centroid (geometric center) of the triangle with vertices $(0,0),(-4,2)$, and $(4,2)$.

The triangle is given as a Type II region by $0 \leq y \leq 2$ with $-2 y \leq x \leq 2 y$. The triangle has base width 8 and height 2 , so its area is $A=\frac{1}{2}(8)(2)=8$. Since the region is symmetric about the y-axis we have

$$
\bar{x}=\frac{1}{A} \iint_{D} x d A=0
$$

by symmetry, since $f(x, y)=x$ is an odd function of x. The y-coordinate of the centroid is given by

$$
\begin{aligned}
\bar{y} & =\frac{1}{A} \iint_{D} y d A \\
& =\frac{1}{8} \int_{0}^{2} \int_{-2 y}^{2 y} y d x d y \\
& =\frac{1}{8} \int_{0}^{2} 4 y^{2} d y \\
& =\frac{1}{8}\left(\frac{4}{3}\left(2^{3}\right)\right) \\
& =\frac{4}{3} .
\end{aligned}
$$

Thus, the centroid of the triangle is at $\left(0, \frac{4}{3}\right)$.
5. Set up, but do not evaluate, the integral $\iiint_{E} x^{2} \cos (y z) d V$, where E is the tetrahedron with vertices $(0,0,0),(2,0,0),(0,4,0)$, and $(0,0,1)$.

The tetrahedron is bounded by the coordinate planes and the plane passing through the three points other than the origin. This plane intersects the coordinate planes in the lines $x+2 z=2, y=0($ or $2 x+4 z=4), y+4 z=4, x=0$, and $2 x+y=4, z=0$. Thus, the equation of the plane must be $2 x+y+4 z=4$, so we can describe the region by $0 \leq y \leq 4-2 x-4 z$ with (x, z) in the triangle bounded by $x=0, z=0$, and $x+2 z=2$, which we can write as $0 \leq x \leq 2-2 z$, with $0 \leq z \leq 1$. Thus, we have

$$
\iiint_{E} x^{2} \cos (y z) d V=\int_{0}^{1} \int_{0}^{2-2 z} \int_{0}^{4-2 x-4 z} x^{2} \cos (y z) d y d x d z
$$

6. Let $E \subseteq \mathbb{R}^{3}$ be the region bounded below by the cone $z=\sqrt{x^{2}+y^{2}}$ and above by the sphere $x^{2}+y^{2}+z^{2}=2 z$. Express the volume of E as a triple integral in both cylindrical and spherical coordinates. You do not have to compute the volume.

The sphere $x^{2}+y^{2}+z^{2}=2 z$, or $x^{2}+y^{2}+(z-1)^{2}=1$, intersects the cone $z=\sqrt{x^{2}+y^{2}}$ when $z^{2}+z^{2}=2 z$, which gives $z=0$ or $z=1$. The intersection at $z=0$ is where the base of the cone meets the bottom of the sphere, while the intersection at $z=1$ is the circle $z=1=x^{2}+y^{2}$. The region thus consists of the top half of the sphere, lying on top of the portion of the cone between $z=0$ and $z=1$.
In cylindrical coordinates, we have $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 1$, since the region projects down to the $x y$-plane onto the disk $x^{2}+y^{2} \leq 1$. The equation of the cone is simply $z=r$, while the sphere becomes $(z-1)^{2}=1-r^{2}$, so $z=1+\sqrt{1-r^{2}}$ for the top half of the sphere (positive root). Thus, the volume is given in cylindrical coordinates by

$$
V=\int_{0}^{2 \pi} \int_{0}^{1} \int_{r}^{1+\sqrt{1-r^{2}}} r d z d r d \theta
$$

In spherical coordinates the cone is given by $\varphi=\pi / 4$, so the interior of the cone corresponds to $0 \leq \varphi \leq \pi / 4$, and the sphere is given by $\rho^{2}=2 \rho \cos \varphi$, or $\rho=2 \cos \varphi$ (since $\rho=0$ can be obtained by setting $\varphi=\pi / 2$). Since the region lies inside the sphere, we have $0 \leq \rho \leq 2 \cos \varphi$, and since the region is symmetric about the z-axis we have $0 \leq \theta \leq 2 \pi$. Thus, we have

$$
V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2 \cos \varphi} \rho^{2} \sin \varphi d \rho d \varphi d \theta
$$

