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1. Consider the curve C in R2 given by the vector-valued function r(t) = 〈t sin t, t cos t〉,
for −∞ < t <∞.

(a) Find the equations of the tangent lines to C when t = 0, π/2 and −π/2.[5]

(b) If we restrict to t ∈ [−π/2, π/2] we obtain a simple, closed curve. Sketch the
curve using your results from part (a). Indicate the orientation of the curve.[3]
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(c) For the simple, closed curve in part (b), set up, but do not evaluate∗, integrals for

(i) The area enclosed by the curve.[3]

(ii) The arc length of the curve.[3]

∗You don’t need to evaluate the integrals, but you should attempt to simplify the integrand.
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2. Let f(x, y) = x3 + y3 + 3xy − 27.

(a) Compute ∇f(x, y).[2]

(b) Find and classify all critical points of f .[6]

(c) Compute the derivative of f at the point (2, 4) in the direction of the curve given
by r(t) = 〈2t2, 3t+ 1〉.[4]
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3. (a) Find the equation of the tangent plane to the surface xyz2 = 6 at the point
(3, 2, 1).[5]

(b) If c(t) = 〈x(t), y(t)〉 is a smooth curve in the xy-plane, and z = f(x, y) is the graph
of a continuously differentiable function, then r(t) = 〈x(t), y(t), f(x(t), y(t))〉 is a
smooth curve that lies on the graph. Find the equation of its tangent line at the
point (x0, y0, z0) given by t = t0.[7]
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4. The integral

∫ 2

−2

∫ √4−x2

0

∫ √8−x2−y2

√
x2+y2

dz dy dx represents the volume of a solid.

(a) Sketch the solid.[2]

(b) Re-write the integral using both cylindrical and spherical coordinates.[6]

(c) Find the volume using whichever one of the above integrals you prefer.[4]
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5. Evaluate the integral

∫∫
D

xy dA, where D is the region in the first quadrant bounded

by the curves y = x, y = 3x, xy = 1, and xy = 4, using an appropriate change of
variables.[10]

Hint: Let u = y/x and v = xy, and then solve for x and y in terms of u and v.
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6. Consider the vector field F(x, y, z) = 〈y2, axy+ z3, byz2〉, where a and b are constants.

(a) Find values of a and b such that F is a conservative vector field, and then find a
potential function f(x, y, z) such that ∇f(x, y, z) = F(x, y, z).[8]

(b) Compute

∫
C

F · dr, where C is the line segment from the point (1, 2, 0) to the

point (2,−1, 3) using the values of a and b found in part (a).[4]
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7. (a) Use Stokes’ Theorem to evaluate

∫∫
S

curlF · dS, where F(x, y, z) = 〈z,−x,−y〉,

and S is the surface of the paraboloid z = x2 +y2, for 1 ≤ z ≤ 4, oriented towards
the xy-plane.[8]

(b) Verify Stokes’ Theorem in this case by computing the original surface integral
directly.[8]
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8. Prove Gauss’ Law: Let F be the vector field F =
r

‖r‖3
, where r(x, y, z) = 〈x, y, z〉. Let

E be any closed, bounded region in R3 with piecewise-smooth boundary S, oriented
by the outward-pointing unit normal vector, such that S does not pass through the
origin. Then[12] ∫∫

S

F · dS =

{
4π, if (0, 0, 0) ∈ E
0, if (0, 0, 0) /∈ E

,

Hint: Calculate
∫∫

S
F · dS =

∫∫
S
F · n dS directly for the sphere x2 + y2 + z2 = a2.

Then use the Divergence Theorem.
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