






1 The Flux Loop Method

To do this problem by making a flux loop we must first recall what a flux loop is. The loop corresponds to
the loop on which we evaluate the Maxwell Equation:

∮

E · ~dℓ = ∂tΦB

We are dealing with Ohmic currents so E ∝ J. Thus the loop must make sense as a current loop. In
particular we wish to choose rectangular loops along a radial crosssection of the cylinder ({θ = 0}) parallel
to the cylindrical axis and we must choose them so that all edges have the same current. Because these are
space curents we will need to calculate the contribution of each current loop, weighted by the weight of its
current, and sum them together.

Look at the following rectangular cross-section of the cylinder: {θ = 0, b > r > 0}. The currents of the
inner and outer cylinders are the same but the densities are not! In particular,

Jin =
I

πa2
Jout = −

I

π(b2 − a2)

The B-field is:

B =

{

µ0Jinπr
2

2πr φ̂ 0 < r < a
µ0Jinπa

2+µ0Joutπ(r
2
−a2)

2πr φ̂ a < r < b
=







µ0
I r

2

a2

2πr φ̂ 0 < r < a

µ0

I−I r
2
−a

2

b2−a2

2πr φ̂ a < r < b

Construct a rectangular loop of length l with radial edges at 0 < r1 < a and a < r2 < b it must have some
current call it ι. Unfortunately it does not follow that Φ = Lι! If this were true, as you can see below, the
inductance would not be well-defined. It cannot depend on the loop. We will need to use, Φ = LI. The flux
per length through the loop we built is:

Φ(r1, r2)/l =

∫ r2

r1

B·da =

∫ a

r1

µ0ι
r2

a2

2πr
dr+

∫ r2

a

µ0

ι− ι r
2
−a2

b2−a2

2πr
dr = µ0ι

−a2
(

b2 + r21 − r22
)

+ 2a2b2 log
(

a
r2

)

+ b2r21

4πa2(a− b)(a+ b)

If we simply take the loop that has r1 = 0 and r2 = b (and declare falsly that it has current I) we get:

L/l = µ0

b2 log
(

a
b

)

2π(a− b)(a+ b)

This is wrong! To get the correct answer we must include all possible loops of current in the inductor. We
need to relate ι to the densities inside/outside and then sum contributions from all possible loops. This
means varying ri over all of their possible values independantly (integrating). In particular the weighting
should be such that after adding all the currents we use a total current of I and the fraction at any point
must match in both sides of the loop. Thus the weight is:

ι = I
r1dr1dθ1

πa2
r2dr2dθ2
π(b2 − a2)

This should look familliar as the weight associated to the density J. So we write the total flux essentially as
a weighted sum so that each configuration of ri is weighted such that the currents in both sides of the loop
match:

Φ

l
=

∫ a

0

∫ b

a

Φ(r1, r2)

l
I
r1dr1dθ1

πa2
r2dr2dθ2
π(b2 − a2)

= µ0I
b2
(

a2 + 2b2 log
(

b
a

)

− b2
)

4π (a2 − b2)
2

So,

L

l
= µ0

b2
(

a2 + 2b2 log
(

b
a

)

− b2
)

4π (a2 − b2)
2
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2 The Energy Method

Calculate the total energy in a section of the tube. Using the B-fields above,

U =
1

2µ0

∫ a

0

(

µ0I
r2

a2

2πr

)2

2πrdr +
1

2µ0

∫ b

a

(

µ0

I + I r2−a2

b2−a2

2πr

)2

2πrdr = µ0I
2 b

2
(

a2 + 2b2 log
(

b
a

)

− b2
)

8π (a2 − b2)
2

U = 1/2LI2 =⇒

L

l
= µ0

b2
(

a2 + 2b2 log
(

b
a

)

− b2
)

4π (a2 − b2)
2
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# 4 Solution and Rubric

1 Solution

1.1 Part A

Use Ohm’s law: J = σE = 1
ρ
E. If E is going to be constant everywhere then it must be that, E = E0r̂ by

spherical symmetry and J = E0

ρ0

(

a
r

)s
r̂. Now, suppose that we calculate the total current flowing through a

sphere (outward!), it must be constant on any sphere because there are no sources of current between radii
a and b. (We are not including the wire carrying current in to the sphere in this calculation.) The spherical
normal vector is in the direction of J so,

∫

J · ~da = 4πr2
E0

ρ0

(a

r

)s

= const. =⇒ s = 2

1.2 Part B

To calculate the current in the circuit we can simply use the result above. When s = 2 then I =
∫

J · ~da =
4πa2E0

ρ0

It remains to compute the electric field. Given that we know that the field is constant and radial
we can integrate along a radial path and relate this to the potential:

V =

∫ r=b

r=a

E0r̂ · r̂dr = (b− a)E0

Thus,

I =
4πa2V

ρ0(b− a)

If you use s = 3 then the solution is different. In this case it makes more sense to calculate the resistance
using R = ρL

A
or,

R =

∫ b

a

ρ0

( r

a

)s dr

4πr2
=

ρ0

4πas

(

bs−1

s− 1
−

as−1

s− 1

)

=

{

ρ0

4πa2 (b− a) s = 2
ρ0

4πa3

(

b2

2 −
a2

2

)

s = 3

Thus,

I =
V

R
=

{

4πa2V
ρ0(b−a) s = 2
8πa3V

ρ0(b2−a2) s = 3

2 Rubric

Grading will be based on a demonstration of comprehension of the formulas and physical concepts. Little
or no credit is given for quotation of formulas, mainly because they are on the equation sheet, you need
to show that you understand something. The grading is roughly divided into the following rubric with the
caveat that any missing vectors on fields, unit errors, and other errors incur penalties at the discretion of
the grader. Below is a set of guidelines for how the problem was graded.
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2.1 Part A (8pts)

Things that get 0 pts:

1. Not predicting a value of s

2. Treating ρ as a charge density. This is very serious because it shows that you don’t understand what
ρ is.

3. Claiming that R =
∫

ρdV . Also shows that you don’t understand the units or definition of ρ.

Things that incur major penalties (−2 to −6):

1. Saying that V should be constant in space. This means E = 0!!

2. Failure to understand the geometry. Incorrect area through which the current flows or incorrect lengths
in the resistance formula.

3. Failure to justify the choice of s. There are degrees of wrongness here and it depends on whether you
made a slight calculation error or did not show that the choice of s really made E constant.

4. Random false statements on the page. Many students wrote things down that are simply false physically
and/or mathematically that may not have contributed to getting the answer but were not crossed out.

Things that incur minor penalties (≈ −2):

1. Unit errors (unless they are due to something above)

2. Missing constants on areas, specifically the area of a sphere is 4πr2.

The points above are described as flexible because it really depends on whether you know what you are
doing. In some cases the errors above are minor but the student gets the wrong s, in other cases the errors
are clearly due to a lack of understanding of fundamentals.

Fianlly, Gauss’s Law is useless here. If you take a sphere around the sphere the enclosed charge is identaically
0! The electric field in this problem is Ohmic and cannot be calculatd with Gauss law because it is not from
free charge in the typical sense.

2.2 Part B (12pts)

You can get full points here if you use a current calclated in part A and note that V =
∫ r=b

r=a
E0r̂ · r̂dr =

(b− a)E0. You may loose a few points though if the answer is not dinensionally sound. Instead you can also
do the calculation of R. For this,

10 pts for setting up the integral with correct limits and Jacobian and cross sectional area etc.

2 pt for integrating correctly

Things that get 0 pts:

1. Leaving tha final current dependant on r! This make no sense physically and it is a grave error.

2. Not treating ρ as continouus.

3. Claiming that R =
∫

ρdV
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Question 5

(a)
First consider a single sheet of current with current flowing in the ŷ direction (i.e. the sheet
on the right with current flowing into page in the side view). For convenience, we first reset
the coordinate such that this sheet coincides with the y-z plane.

By translation symmetry along the y and z axes, we know that the magnetic field cannot
depends on the y and z coordinates, i.e.

~B(x, y, z) = ~B(x) (1)

Therefore, WLOG we can consider a point on the x axis at a distance x0 > 0 away from
the sheet. Now note that we can slice up the sheet and view it as a collection of differential
infinite wires running along the y axis. Each such “wire” is labeled by its z coordinate. By
cylindrical symmetry, we know that the magnetic field of an infinite wire circulates around
the wire. Hence, the magnetic field due to the two differential wires at z = ±|z0| will (1)
have no y component; (2) cancel each other in the x direction, and (3) add up in the z
direction. Therefore, we know by symmetry that

~B(x) = Bz(x)ẑ. (2)

Now we consider the original system with two sheets at x = ±d with currents flowing in
the ±y directions. By superposition, we see that the total field of the system still has the
form of Eq.[2]. Due to the high symmetry in the problem, we can consider a rectangular
Amperian loop defined by

C : (x0, 0, l/2)
(1)
→ (2d, 0, l/2)

(2)
→ (2d, 0,−l/2)

(3)
→ (x0, 0,−l/2)

(4)
→ (x0, 0, l/2) (3)

where l > 0, |x0| < d, and the x-coordinate 2d was arbitrarily chosen: all we need is that
the leg is outside of the region bounded by the sheets. As such we have

∮

C

~B · d~l =

∫

1

Bz(x)[ẑ · x̂]dx+

∫

2

Bz(x)[ẑ · (−ẑ)]dz +

∫

3

Bz(x)[ẑ · (−x̂)]dx+

∫

4

Bz(x)[ẑ · ẑ]dz

=0 + Bz(2d)l + 0 + Bz(x0)l

=Bz(x0)l

(4)

where we have used the given fact that ~B(2d) = ~0.

The direction of the Amperian loop, defined via right hand rule, is ŷ. Since the current
is also flowing in the +y direction, we have

µ0Ienc = µ0Kl > 0 (5)

1



By Ampere’s law, we then have

∮

C

~B · d~l =µ0Ienc

lBz(x0) =µ0lK

Bz(x0) =µ0K

=⇒ ~B(x) =







µ0Kẑ for |x| < d

~0 for |x| > d

(6)

(b)
By Faraday’s Law

∮

C

~E · d~l = −
dΦB

dt
(7)

Comparing with Ampere’s law in Eq.[6], we see that they are mathematically identical if we
identify

~B ↔ ~E & µ0Ienc ↔ −
dΦB

dt
(8)

and hence the symmetry arguments we had for finding ~B using Ampere’s law also apply for
finding ~E using Faraday’s law. In particular, it follows from part (a) that for a single sheet

of current with current density ~K = Kŷ we have ~B(x) = Bz(x)ẑ. Here we have a dΦB/dt
that “flows” in the z direction, and by the correspondence in Eq.[7] we know that

~E = Ey(x)ŷ (9)

and in addition by rotation symmetry along the z axis we also have

Ey(x) = −Ey(−x) (10)

Now consider an “Amperian” loop with x0, l > 0:

C ′ : (−x0, l/2, 0)
(1′)
→ (x0, l/2, 0)

(2′)
→ (x0,−l/2, 0)

(3′)
→ (−x0,−l/2, 0)

(4′)
→ (−x0, l/2, 0) (11)

which gives

∮

C′

~E · d~l =

∫

1′
Ey(x)[ŷ · x̂]dx+

∫

2′
Ey(x)[ŷ · (−ŷ)]dy +

∫

3′
Ey(x)[ŷ · (−x̂)]dx+

∫

4′
Ey(x)[ŷ · ŷ]dy

=0− Ey(x0)l + 0 + Ey(−x0)l

=− 2Ey(x0)l

(12)
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note that the direction of the loop is −ẑ. The magnetic flux through C ′ is then

ΦB =

∫

S

~B · d ~A

=

∫

S

(Bz(x) ẑ) · (−dA ẑ)

=







−µ0Kl2x0 for x0 < d

−µ0Kl2d for x0 > d

(13)

this gives

−
dΦB

dt
=







µ0l2x0 (dK/dt) for x0 < d

µ0l2d (dK/dt) for x0 > d
(14)

where we have

dK

dt
=

d

dt

[

K0

(

t

τ

)]

=
K0

τ

(15)

Faraday’s law then gives

~E =







−sign(x)µ0K0 |x|/τ ŷ for |x| < d

−sign(x)µ0K0 d/τ ŷ for |x| > d
(16)

note also how the direction of ~E is determined by Lenz’s law.
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Problem 7 (20 pts)

a) (7 pts)

(5 pts) Use the definition of entropy, the given relation of dQ = 1/2dE and the definition of internal energy to find an
integrable expression for dS.

dS =
dQ

T
=

dE

2T
=

3/2nRdT

2T

(1 pt) Integrating that expression from point a to point b

∆S ≡

∫ b

a

dS =

∫ Tb

Ta

3

4
nR

dT

T

(1 pt) Correct final answer

∆S =
3

4
nRln

(

Tb

Ta

)

b) Method 1 (13 pts)

(5 pts) Use the first law, the given relation of dQ = 1/2dE and the definition of internal energy to find an expression between
P, V and T

dE =− PdV + dQ

=− PdV + dE/2

dE/2 =− PdV

3

4
nRdT =− PdV

(1 pt) Integrating the left hand side from a to b
∫ Tb

Ta

3

4
nRdT =

3

4
nR(Tb − Ta)

(2 pts) Assuming the equation of state (EOS) PV β =const., writen down P (V )

PV β = PaV
β
a

P (V ) =Pa
V β
a

V β

(2 pts) Use this to integrate the right hand side

−

∫ Tb

Ta

PdV = −

∫ Tb

Ta

Pa
V β
a

V β
dV = −

PaV
β
a

1− β
(V 1−β

b − V 1−β
a )

(2 pts) Write this in terms of solely T

−

∫ Tb

Ta

PdV =−

1

1− β
(PaV

β
a V 1−β

b − PaVa)

=−

1

1− β
(PbV

β
b V 1−β

b − PaVa) since PaV
β
a = PbV

β
b

=−

1

1− β
(PbVb − PaVa)

=−

1

1− β
(nRTb − nRTa)

=−

nR

1− β
(Tb − Ta)
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(1 pt) Get β by comparing the left and the right

3

4
nR(Tb − Ta) =−

nR

1− β
(Tb − Ta)

3

4
=−

1

1− β
4

3
=β − 1

β =1 +
4

3
=

7

3

b) Method 2 (13 pts)

(5 pts) Use the first law, the given relation of dQ = 1/2dE and the definition of internal energy to find an expression between
P, V and T

dE =− PdV + dQ

=− PdV + dE/2

dE/2 =− PdV

3

4
nRdT =− PdV

(3 pt) Use ideal gas law to eliminate P and arrive at an integrable expression

3

4
nRdT =−

nRT

V
dV

3

4
nR

dT

T
=−

nRdV

V

−

3

4

dT

T
=
dV

V

(1 pts) Integrating both sides

−

3

4

∫ Tb

Ta

dT

T
=

∫ Vb

Va

dV

V

−

3

4
ln

(

Tb

Ta

)

=ln

(

Vb

Va

)

(2 pts) Show a relation that is constant along the process

−

3

4
ln

(

Tb

Ta

)

=ln

(

Vb

Va

)

ln

(

Tb

Ta

)(

− 3/4) =ln

(

Vb

Va

)

(

Tb

Ta

)

−3/4

=

(

Vb

Va

)

T
−3/4
b

Vb
=
T

−3/4
a

Va
= const.
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(1 pts) Rewrite this in terms of P and V

T−3/4

V
=const.

(PV )−3/4

V
=const.′

P−3/4V −7/4 =const.′

PV 7/3 =const.′′

(1 pt) Correct final answer

β =
7

3
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