
Mathematics 185. Fall Semester 2014 Instructor: Mihaela Ifrim

Midterm

October 15, 2014, 15:10-16:00

Your Name:

Your ID:

Directions: This is a closed book exam. No calculators, cell phones, pagers, mp3 players and
other electronic devices are allowed.
Remember: Answers without explanations will not count. You should show your work. Solve
each problem on its own page. If you need extra space you can use backs of the pages and the
extra page attached to your exam paper, but make a note you did so.
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1(20) . Show that ∫ +∞

−∞

x

(x2 + 2x+ 2)(x2 + 4)
dx = − π

10
.

Proof. This integral fits in the
∫ P (x)

Q(x)
, where P (x) and Q(x) are polynomials in x, and the degree

of P (x) is less with more than 2 units than the degree of Q(x). Thus the contour we will work
with is the semicircle countour; depending on your preference we can work with the uper half one
or with the lower one. Assuming you prefere the upper one, we need to figure out which are the
solutions of Q(z) = 0 that are enclosed by this contour. We get z = 2i,−2i,−1− i,−1 + i. Thus
the poles that live in the upper half plane and can be anclosed by a semisicre of radius R, are
z = 2i and z = −1 + i. Thus the whole contour we are integrating over, CR, is the union of the
real segment [−R,R] and the upper bound of the semicircle, which we will denote by ΓR; this
means CR = [−R,R] ∪ ΓR.
Integrating over the countour we have∫

CR

z

(z2 + 2z + 2)(z2 + 4)
dz =

∫
ΓR

z

(z2 + 2z + 2)(z2 + 4)
dz +

∫ R

−R

x

(x2 + 2x+ 2)(x2 + 4)
dx. (1)

By Residue Formula the RHS of(1) is 2πi× residue of f at 2i added witht the 2πi×residue of f
at −1 + i, were

f =
z

(z2 + 2z + 2)(z2 + 4)
.

Easy computations gives

2πires2if =
−πi− 2π

10
, 2πires−1+if =

πi− 3π

10
.

−πi− 2π

10
+
πi− 3π

10
= − π

10
=

∫
ΓR

z

(z2 + 2z + 2)(z2 + 4)
dz +

∫ R

−R

x

(x2 + 2x+ 2)(x2 + 4)
dx.

Making R go to infinity we observe that∫
ΓR

z

(z2 + 2z + 2)(z2 + 4)
dz ==

∫ π

0

iR2e2iθ

(R2e2iθ + 2Reıθ + 2)(R2e2iθ + 4)
dθ

Now, (use L’Hospital Rule or realize that the power of the exponential il much larger in the
denominator and it alsways “win”)

lim
R→∞

iR2e2iθ

(R2e2iθ + 2Reıθ + 2)(R2e2iθ + 4)
= 0.

Thus, as R→∞
− π

10
=

∫ ∞
−∞

x

(x2 + 2x+ 2)(x2 + 4)
dx.

This finishes the proof.



2(20) . Please state the following

• (a) Cauchy’s Integral Formula.

• (b) Maximum Modulus Principle.



3(20) . Use Rouche’s Theorem to find the number of zeros of the polynomial z4 + 5z+ 3 in the annulus
1 < |z| < 2.

Proof. First we count the zeros for |z| < 2. We pick f(z) = z4 and observe that on |z| = 2,
|f(z)| = 16. The remaning part of the polynomial will be called g(z) := 5z + 3. And on |z| = 2,
|g(z)| ≤ 5|z| + 3 = 13. Thus, f has the same numbers of zero as f + g. Since f has four zeros
inside the circle of radius 2, we conclude that so has our polynomial.

Secondly we count the zeros for |z| < 1. We pick f(z) = 5z + 3 and observe that on |z| = 1,
2 ≤ |f(z)| ≤ 8. The remaning part of the polynomial will be called g(z) := z4. And on |z| = 1,
|g(z)| = 1. Thus, f has the same numbers of zero as f + g. Since f has one zero inside the unit
circle (the zero is attained at z = −3/5, which is in the unit disc), we conclude that so has our
polynomial.

Thus, one can conclude that in the annulus 1 < |z| < 2 our polynomial should have three
solutions... But this is not quite that obvious. We only obtained that there are three zeros
in 1 ≤ |z| < 2. What if some of the solutions enclosed inside our circle of radius 2 sit exactly
on the boundary of the unit circle (note that we have strict inequality in the statement of the
problem)? To make the first inequality strict, we also need to show that our polynomis has no
zeros on |z| = 1. Indeed, in this case

|5z + 3− (−z4)| ≥ ||5z + 3| − | − z4|| = ||5z + 3| − 1|.

And just above we showed above that |5z + 3| > 2 on |z| = 1. Thus, |f(z)| > 1 on |z| = 1 .



4(20) . Suppose that f(z) is an entire function such that

|f(z)| ≤ e<z, for all z ∈ C.

Prove that f(z) = cez for some constant c ∈ C.

Proof. The functionf(z)/ez is entire and bounded (since ez is entire and non-zero, and |f(z)| ≤
|ez|), so by Liouvilles theorem it is equal to a constant.



5(20) . Let f be non-constant and holomorphic in an open set containing the closed unit disc. Show
that if |f(z)| = 1 whenever |z| = 1, then the image of f contains the unit disc.
Hint: One must show that f(z) = w0 has a root for every w0 ∈ D. To do this, it suffices to show
that f(z) = 0 has a root (why?). Use the maximum modulus principle to conclude.

Proof. Assume |f(z)| = 1 whenever |z| = 1, and let w0 in D. Applying Rouche’s theorem to the
functions f(z), and g(z) = −w0, we see that

|f(z)| = 1 > | − w0| = |g(z)|

for all z on ∂D (this notation meas boundary of D), and therefore f(z) and f(z)+g(z) = f(z)−w0

have the same number of zeros in D. Hence, if f(z) = 0 has a solution, then f(z) = w0 has a
solution.
We are reduced to showing f(z) = 0 for some z ∈ D. Assume not. Then the function 1/f(z) is
holomorphic on D , and the maximum modulus principle implies

1

infz∈D(|f(z)|)
= sup

z∈D

(
1

|f(z)|

)
≤ sup
|z|=1

(
1

(|f(z)|

)
= 1.

Applying the maximum modulus principle to f(z), we obtain

sup
z∈D

(|f(z)|) ≤ sup
z∈∂D

(|f(z)|) = 1.

Hence, if z ∈ D, we have

1 ≤ inf
z∈D

(|f(z)|) ≤ |f(z)| ≤ sup
z∈D

(|f(z)|) ≤ 1,

which implies f(z) is constant by Chapter 1, Problem 13. We thus have a contradiction, and
therefore the image of f contains D.


