Solutions to final for MATH 53, professor Agol

December 18, 2014

1. (a) Let L be a line passing through the points Q and R, and let P be a point not on the line L. Show that the distance d from the point P to the line L is

$$
d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}
$$

where $\mathbf{a}=\overrightarrow{Q R}$ and $\mathbf{b}=\overrightarrow{Q P}$.
Solution: Let $S=Q+\mathbf{a}+\mathbf{b}$. Then $P Q R S$ is the parallelogram spanned by a and \mathbf{b}, which has area $|\mathbf{a} \times \mathbf{b}|$ by a property of the cross product. On the other hand, this parallelogram has area base \times height $=|\mathbf{a}| d$, where d is the distance between P and the line L. So we get

$$
d=\frac{|\mathbf{a} \times \mathbf{b}|}{|\mathbf{a}|}
$$

(b) Draw a figure and label it to illustrate your answer, showing $P, Q, R, L, \mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}$ and a segment of length d.

Solution:

(c) Use the formula in part (a) to find the distance d from the point $P(1,9,12)$ to the line L through $Q(0,6,8)$ and $R(-1,4,6)$.

Solution:

We have $\mathbf{a}=\overrightarrow{Q R}=R-Q=\langle-1-0,4-6,6-8\rangle=\langle-1,-2,-2\rangle$, and $\mathbf{b}=\overrightarrow{Q P}=$ $P-Q=(1-0,9-6,12-8)=\langle 1,3,4\rangle$. So $|\mathbf{a}|=\sqrt{(-1)^{2}+(-2)^{2}+(-2)^{2}}=3$.
$\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & -2 & -2 \\ 1 & 3 & 4\end{array}\right|=(-2 \cdot 4-(-2) \cdot 3) \mathbf{i}+(-2 \cdot 1-(-1) \cdot 4) \mathbf{j}+(-1 \cdot 3-(-2) \cdot 1) \mathbf{k}=-2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$.
So $|\mathbf{a} \times \mathbf{b}|=3$, and $d=|\mathbf{a} \times \mathbf{b}| /|\mathbf{a}|=3 / 3=1$.
2. (a) Find an equation for the plane consisting of all points that are equidistant from the points $(2,5,5)$ and $(-6,3,1)$.
Solution: The plane is perpendicular to the midpoint of the line segment connecting the two points. We compute the midpoint $\frac{1}{2}((2,5,5)+(-6,3,1))=$ $(-2,4,3)$, which is a point lying on the plane. A perpendicular vector is given by $(2,5,5)-(-2,4,3)=(4,1,2)$. Thus, we get the equation $4 x+y+2 z=$ $(4,1,2) \cdot(-2,4,3)=2$.
(b) Sketch a picture illustrating your answer to part (a).
3. Let $\mathbf{r}(t)=\langle 1+\cos t, 2+\sin t\rangle$.
(a) Sketch the plane curve with the vector equation [Hint: find an equation satisfied by the curve].
Solution: The unit circle $(x-1)^{2}+(y-2)^{2}=1$ centered at $(1,2)$.
(b) Find $\mathbf{r}^{\prime}(t)$.

Solution: We have $\mathbf{r}^{\prime}(t)=\left\langle(1+\cos t)^{\prime},(2+\sin t)^{\prime}\right\rangle=\langle-\sin t, \cos t\rangle$.
(c) Sketch the position vector $\mathbf{r}(t)$ and the tangent vector $\mathbf{r}^{\prime}(t)$ for $t=\pi / 6$.

Solution: $\mathbf{r}(\pi / 6)=\left\langle 1+\sqrt{3} / 2,2+\frac{1}{2}\right\rangle, \mathbf{r}^{\prime}(\pi / 6)=\left\langle-\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$.
4. Find the local maximum and minimum values and saddle point(s) of the function.

$$
f(x, y)=x^{3}-12 x y+8 y^{3}
$$

Solution: We set the gradient $\nabla f=\left\langle 3 x^{2}-12 y,-12 x+24 y^{2}\right\rangle=\langle 0,0\rangle$ to find the critical points. So $3 x^{2}-12 y=0,-12 x+24 y^{2}=0$, and therefore we have $x^{2}=$ $4 y, x=2 y^{2}$. Substituting, we get $4 y=\left(2 y^{2}\right)^{2}=4 y^{4}$, so $y^{4}=y$, which holds only when $y=1, y=0$.
If $y=0$, then $x=0$, and we have the critical point $(0,0)$. If $y=1$, then $x=2$, and we have the critical point $(2,1)$.
We also compute $f_{x y}=-12, f_{x x}=6 x, f_{y y}=48 y$, and $D=f_{x x} f_{y y}-f_{x y}^{2}=288 x y-$ $(-12)^{2}=144(2 x y-1)$.
Then $D(0,0)=-144<0$, so $f(0,0)=0$ is a saddle point.
$D(2,1)=144(2 \cdot 2 \cdot 1-1)>0$, and $f_{x x}(2,1)=12>0$, so $f(2,1)=-8$ is a local minimum.
5. (a) Find the extreme values of f on the region described by the inequality:

$$
f(x, y)=x^{2}+y^{2}, \quad x^{4}+y^{4} \leq 1
$$

Solution: Since the region $D=\left\{(x, y) \mid x^{4}+y^{4} \leq 1\right\}$ is a closed and bounded region, we know that f achieves its maximum and minimum values on D. Moreover, the extrema will occur at a critical point of f in the interior of D, or at a maximum or minimum on $\partial D=\left\{(x, y) \mid x^{4}+y^{4}=1\right\}$. Let $g(x, y)=x^{4}+y^{4}$ denote the constraint function for ∂D.

We compute $\nabla f(x, y)=\nabla\left(x^{2}+y^{2}\right)=\langle 2 x, 2 y\rangle$, which has a critical point at $(0,0)$, and $f(0,0)=0$.
To determine the extrema of f on ∂D, we apply the method of Lagrange multipliers. We have $\nabla g=\nabla\left(x^{4}+y^{4}\right)=\left\langle 4 x^{3}, 4 y^{3}\right\rangle$, and we set $\langle 2 x, 2 y\rangle=\lambda\left\langle 4 x^{3}, 4 y^{3}\right\rangle$. Notice that $\nabla g \neq\langle 0,0\rangle$ for any point in ∂D, so that the Lagrange multiplier method applies. So we need to solve simultaneously the equations $4 \lambda x^{2}=2 x, 4 \lambda y^{3}=$ $2 y, x^{4}+y^{4}=1$.
Since $\left(2 \lambda x^{2}-1\right) x=0$, we have either $x=0$ or $2 \lambda x^{2}=1$, and similarly $y=0$ or $2 \lambda y^{2}=1$.
Case 1: $x=0$ or $y=0$ (but not both, since $x^{4}+y^{4}=1$).
Then we get solutions $(0, \pm 1),(\pm 1,0)$ using the equation $x^{4}+y^{4}=1$. Then $f(0, \pm 1)=f(\pm 1,0)=1$ at these points.
Case 2: $x, y \neq 0$.
Then we have $x^{2}=\frac{1}{2 \lambda}=y^{2} \Longrightarrow x^{4}=y^{4} \frac{1}{2}$ from the constraint. Thus, $x, y=$ $\pm 2^{-\frac{1}{4}}$, and $x^{2}=y^{2}=\frac{1}{\sqrt{2}}$. So we have $f(x, y)=x^{2}+y^{2}=\sqrt{2}>1$ for these points. Comparing values from the different points, we get a minimum value $f(0,0)=0$, and maximum value $\sqrt{2}$.
(b) Sketch the curve $x^{4}+y^{4}=1$ and the level curves of $x^{2}+y^{2}$ going through the maxima and minima of $x^{2}+y^{2}$ on the curve $x^{4}+y^{4}=1$. Also show $\nabla\left(x^{2}+y^{2}\right)$ and $\nabla\left(x^{4}+y^{4}\right)$ at a maximum and minimum. Plot the maxima and minima of $x^{2}+y^{2}$ in the region $x^{4}+y^{4} \leq 1$ on the same graph.
6. (a) Find the area of the part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.
Solution: We plug into the formula for the area of a graph, and convert to polar coordinates:

$$
\begin{gathered}
\text { Area }=\iint_{x^{2}+y^{2} \leq 1} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A=\iint_{x^{2}+y^{2} \leq 1} \sqrt{1+y^{2}+x^{2}} d A \\
=\int_{0}^{2 \pi} \int_{0}^{1} \sqrt{1+r^{2}} r d r d \theta=2 \pi\left[\frac{1}{3}\left(1+r^{2}\right)^{\frac{3}{2}}\right]_{0}^{1}=\frac{2 \pi}{3}\left(\left(1+1^{2}\right)^{\frac{3}{2}}-\left(1+0^{2}\right)^{\frac{3}{2}}\right)=\frac{2 \pi}{3}\left(2^{\frac{3}{2}}-1\right) .
\end{gathered}
$$

(b) Sketch the surface.

7. Evaluate the triple integral

$$
\iiint_{T} x y z d V
$$

where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0),(1,0,1)$.
Solution: The tetrahedron is given by the inequalities $0 \leq x \leq 1,0 \leq y \leq x, 0 \leq z \leq$ $x-y$. Then we have

$$
\begin{aligned}
& \iiint_{T} x y z d V=\int_{0}^{1} \int_{0}^{x} \int_{0}^{x-y} x y z d z d y d x=\int_{0}^{1} \int_{0}^{x}\left[\frac{1}{2} x y z^{2}\right]_{0}^{x-y} d y d x=\int_{0}^{1} \int_{0}^{x} \frac{1}{2} x y(x-y)^{2} d y d x \\
& =\int_{0}^{1} \int_{0}^{x} \frac{1}{2} x^{3} y-x^{2} y^{2}+\frac{1}{2} x y^{3} d y d x \\
& =\int_{0}^{1}\left[\frac{1}{4} x^{3} y^{2}-\frac{1}{3} x^{2} y^{3}+\frac{1}{8} x y^{4}\right]_{0}^{x} d x=\int_{0}^{1}\left[\frac{1}{4} x^{5}-\frac{1}{3} x^{5}+\frac{1}{8} x^{5}\right] d x \\
& \\
& =\frac{1}{24}\left[\frac{1}{6} x^{6}\right]_{0}^{1}=\frac{1}{144} .
\end{aligned}
$$

8. Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.

$$
\mathbf{F}(x, y)=\langle x, y, x y\rangle, \mathbf{r}(t)=\langle\cos t, \sin t, t\rangle, 0 \leq t \leq \pi
$$

Solution: We have $\mathbf{F}(\mathbf{r}(t))=\langle\cos t, \sin t, \cos t \sin t\rangle$ and $\mathbf{r}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle$. Then

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
=\int_{0}^{\pi}\langle\cos t, \sin t, \cos t \sin t\rangle \cdot\langle-\sin t, \cos t, 1\rangle d t=\int_{0}^{\pi} \sin t \cos t d t=\left[\frac{1}{2} \sin ^{2} t\right]_{0}^{\pi}=0 .
\end{gathered}
$$

9. Consider the 3-dimensional vector field

$$
\mathbf{F}=\mathbf{i}+\sin z \mathbf{j}+y \cos z \mathbf{k}
$$

(a) Find the curl and divergence of \mathbf{F}.

Solution: From part (b), we have $\mathbf{F}=\nabla f$, so $\nabla \times \mathbf{F}=\nabla \times \nabla f=\mathbf{0}$.
We also have $\nabla \cdot \mathbf{F}=\frac{\partial 1}{\partial x}+\frac{\partial \sin z}{\partial y}+\frac{\partial y \cos z}{\partial z}=-y \sin z$.
(b) Find a function f such that $\mathbf{F}=\nabla f$.

Solution: Suppose that $\mathbf{F}=\nabla f$.
Then $\frac{\partial f}{\partial x}=1 \Longrightarrow f(x, y, z)=x+g(y, z)$.
So $\frac{\partial f}{\partial y}=\sin z=g_{y} \Longrightarrow g(y, z)=y \sin z+h(z)$.
Then $\frac{\partial f}{\partial z}=y \cos z=y \cos z+h^{\prime}(z)$, so we may take $h(z)=0$.
Then we have $f(x, y, z)=x+y \sin z$.
(c) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is any path connecting $(1,-1,0)$ to $(3,2, \pi)$.

Solution:

We have via the Fundamental Theorem of Line Integrals

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} \nabla f \cdot d \mathbf{r}=f(3,2, \pi)-f(1,-1,0)=3+2 \sin \pi-(1-\sin 0)=2
$$

10. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for the given vector field \mathbf{F} and the oriented surface S. In other words, find the flux of \mathbf{F} across S.

$$
\mathbf{F}(x, y, z)=-x \mathbf{i}-y \mathbf{j}+z^{3} \mathbf{k},
$$

S is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=3$ with downward orientation.
Solution: We have $S=\left\{(x, y, z) \mid z=\sqrt{x^{2}+y^{2}}, 1 \leq z \leq 3\right\}$. We may parameterize S then via the function $\mathbf{r}(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}}\right), 1 \leq \sqrt{x^{2}+y^{2}} \leq 3$.
We compute $\mathbf{r}_{x}=\left\langle 1,0, \frac{1}{2}\left(x^{2}+y^{2}\right)^{-\frac{1}{2}} \cdot 2 x\right\rangle=\left\langle 1,0, \frac{x}{z}\right\rangle, \mathbf{r}_{y}=\left\langle 0,1, \frac{y}{z}\right\rangle$.
Then we have

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & \frac{x}{z} \\
0 & 1 & \frac{y}{z}
\end{array}\right|=-\frac{x}{z} \mathbf{i}-\frac{y}{z} \mathbf{j}+\mathbf{k} .
$$

Then $\mathbf{F} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right)=\left\langle-x,-y, z^{3}\right\rangle \cdot\langle-x / z,-y / z, 1\rangle=x^{2} / z+y^{2} / z+z^{3}=z+z^{3}$. However, the normal vector to S will point opposite to $\mathbf{r}_{x} \times \mathbf{r}_{y}$, so we insert a minus sign in the integral.

Now, we convert to polar coordinates, so that S is given by $z=r, 1 \leq r \leq 3,0 \leq \theta \leq$ 2π. So we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{1 \leq r \leq 3}-\mathbf{F} \cdot\left(\mathbf{r}_{x} \times \mathbf{r}_{y}\right) d A=-\int_{0}^{2 \pi} \int_{1}^{3}\left(r+r^{3}\right) r d r d \theta=-2 \pi \int_{1}^{3} r^{2}+r^{4} d r \\
& =-2 \pi\left[\frac{1}{3} r^{3}+\frac{1}{5} r^{5}\right]_{1}^{3}=-2 \pi[9+243 / 5-1 / 3-1 / 5]=-1712 \pi / 15
\end{aligned}
$$

11. Consider the 3 -dimensional vector field $\mathbf{F}(x, y, z)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right\rangle$.
(a) What is the domain of \mathbf{F} ?

Solution: The domain is $\{(x, y, z) \mid(x, y) \neq(0,0)\}$, that is the complement of the z-axis.
(b) Show that for every smooth oriented surface S in the domain of \mathbf{F} with smooth oriented boundary curve C,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=0
$$

Solution: We compute

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}} & 0
\end{array}\right|=\left(\frac{\partial}{\partial x} \frac{x}{x^{2}+y^{2}}+\frac{\partial}{\partial y} \frac{-y}{x^{2}+y^{2}}\right) \mathbf{k}=\mathbf{0}
$$

so \mathbf{F} is irrotational. Thus, for a smooth oriented surface S in the domain of \mathbf{F}, we may apply Stokes' theorem (since the domain of \mathbf{F} is an open set containing S) to conclude

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=0
$$

(c) Show that there is a closed curve B in the domain of \mathbf{F} such that

$$
\int_{B} \mathbf{F} \cdot d \mathbf{r} \neq 0 .
$$

[Hint: try a curve in the plane $z=0$]
Solution: Let B be the closed curve $\mathbf{r}(t)=\langle\cos (t), \sin (t), 0\rangle, 0 \leq t \leq 2 \pi$. Then $\mathbf{F}(\mathbf{r}(t))=\langle-\sin (t), \cos (t), 0\rangle$, and $\mathbf{r}^{\prime}(t)=\langle-\sin (t), \cos (t), 0\rangle$. So

$$
\int_{B} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t=\int_{0}^{2 \pi}\langle-\sin (t), \cos (t), 0\rangle \cdot\langle-\sin (t), \cos (t), 0\rangle=2 \pi
$$

(d) Is \mathbf{F} a conservative vector field?

Solution: \mathbf{F} is not conservative, since $\int_{B} \mathbf{F} \cdot d \mathbf{r}=2 \pi$, whereas a conservative vector field has zero line integral around each closed curve by 16.3.3.
12. Consider the 3-dimensional vector field

$$
\mathbf{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}\langle x, y, z\rangle .
$$

(a) What is the domain of \mathbf{F} ?

Solution: The domain is $\{(x, y, z) \mid(x, y, z) \neq(0,0,0)\}$.
(b) Show that for every closed bounded solid region E in the domain of \mathbf{F} with smooth boundary surface S,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0
$$

Solution: We compute $\nabla \cdot \mathbf{F}=0$. Thus, by the Divergence Theorem,

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \nabla \cdot \mathbf{F} d V=0 .
$$

(c) Show that for a sphere R centered at the origin

$$
\iint_{R} \mathbf{F} \cdot d \mathbf{S}=4 \pi
$$

Solution: Take the sphere R of radius r about $\mathbf{0}$ given by the equation $x^{2}+$ $y^{2}+z^{2}=r^{2}$, with outward pointing unit normal $\mathbf{n}=\langle x, y, z\rangle / r$ and $\mathbf{F}(x, y, z)=$ $\langle x, y, z\rangle / r^{3}$. Then

$$
\iint_{R} \mathbf{F} \cdot d \mathbf{S}=\iint_{R} \mathbf{F}(x, y, z) \cdot \mathbf{n} d S=\int_{R} \frac{1}{r^{2}} d S=\operatorname{Area}(R) / r^{2}=4 \pi
$$

(d) Does $\mathbf{F}=\nabla \times \mathbf{G}$ for some vector field \mathbf{G} ?

Solution: Suppose that $\mathbf{F}=\nabla \times \mathbf{G}$. Then by Stokes' Theorem

$$
\iint_{R} \mathbf{F} \cdot d \mathbf{S}=\iint_{R} \nabla \times \mathbf{G} \cdot d \mathbf{S}=\int_{\emptyset} \mathbf{G} \cdot d \mathbf{r}=0
$$

However, this is false for the unit sphere from part (c), a contradiction. Thus, $\mathbf{F} \neq \nabla \times \mathbf{G}$.

