
Solutions to final for MATH 53, professor Agol

December 18, 2014

1. (a) Let L be a line passing through the points Q and R, and let P be a point not on
the line L. Show that the distance d from the point P to the line L is

d =
|a× b|
|a|

,

where a =
→
QR and b =

→
QP .

Solution: Let S = Q + a + b. Then PQRS is the parallelogram spanned by a
and b, which has area |a × b| by a property of the cross product. On the other
hand, this parallelogram has area base × height = |a|d, where d is the distance
between P and the line L. So we get

d =
|a× b|
|a|

.

(b) Draw a figure and label it to illustrate your answer, showing P,Q,R, L, a,b, a×b
and a segment of length d.

Solution:

a

b

Q

R

P

S

d

a x b

L

(c) Use the formula in part (a) to find the distance d from the point P (1, 9, 12) to
the line L through Q(0, 6, 8) and R(−1, 4, 6).

Solution:

We have a =
→
QR = R−Q = 〈−1−0, 4−6, 6−8〉 = 〈−1,−2,−2〉, and b =

→
QP =

P −Q = (1− 0, 9− 6, 12− 8) = 〈1, 3, 4〉. So |a| =
√

(−1)2 + (−2)2 + (−2)2 = 3.

a×b =

∣∣∣∣∣∣
i j k
−1 −2 −2
1 3 4

∣∣∣∣∣∣ = (−2·4−(−2)·3)i+(−2·1−(−1)·4)j+(−1·3−(−2)·1)k = −2i+2j+k.

So |a× b| = 3, and d = |a× b|/|a| = 3/3 = 1.



2. (a) Find an equation for the plane consisting of all points that are equidistant from
the points (2, 5, 5) and (−6, 3, 1).

Solution: The plane is perpendicular to the midpoint of the line segment con-
necting the two points. We compute the midpoint 1

2
((2, 5, 5) + (−6, 3, 1)) =

(−2, 4, 3), which is a point lying on the plane. A perpendicular vector is given
by (2, 5, 5) − (−2, 4, 3) = (4, 1, 2). Thus, we get the equation 4x + y + 2z =
(4, 1, 2) · (−2, 4, 3) = 2.

(b) Sketch a picture illustrating your answer to part (a).

3. Let r(t) = 〈1 + cos t, 2 + sin t〉.

(a) Sketch the plane curve with the vector equation [Hint: find an equation satisfied
by the curve].

Solution: The unit circle (x− 1)2 + (y − 2)2 = 1 centered at (1, 2).

(b) Find r′(t).

Solution: We have r′(t) = 〈(1 + cos t)′, (2 + sin t)′〉 = 〈− sin t, cos t〉.
(c) Sketch the position vector r(t) and the tangent vector r′(t) for t = π/6.

Solution: r(π/6) = 〈1 +
√

3/2, 2 + 1
2
〉, r′(π/6) = 〈−1

2
,
√
3
2
〉.

4. Find the local maximum and minimum values and saddle point(s) of the function.

f(x, y) = x3 − 12xy + 8y3.

Solution: We set the gradient ∇f = 〈3x2 − 12y,−12x + 24y2〉 = 〈0, 0〉 to find the
critical points. So 3x2 − 12y = 0,−12x + 24y2 = 0, and therefore we have x2 =
4y, x = 2y2. Substituting, we get 4y = (2y2)2 = 4y4, so y4 = y, which holds only when
y = 1, y = 0.

If y = 0, then x = 0, and we have the critical point (0, 0). If y = 1, then x = 2, and
we have the critical point (2, 1).

We also compute fxy = −12, fxx = 6x, fyy = 48y, and D = fxxfyy − f 2
xy = 288xy −

(−12)2 = 144(2xy − 1).

Then D(0, 0) = −144 < 0, so f(0, 0) = 0 is a saddle point.

D(2, 1) = 144(2 · 2 · 1 − 1) > 0, and fxx(2, 1) = 12 > 0, so f(2, 1) = −8 is a local
minimum.

5. (a) Find the extreme values of f on the region described by the inequality:

f(x, y) = x2 + y2, x4 + y4 ≤ 1.

Solution: Since the region D = {(x, y)|x4 + y4 ≤ 1} is a closed and bounded
region, we know that f achieves its maximum and minimum values on D. More-
over, the extrema will occur at a critical point of f in the interior of D, or at
a maximum or minimum on ∂D = {(x, y)|x4 + y4 = 1}. Let g(x, y) = x4 + y4

denote the constraint function for ∂D.
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We compute ∇f(x, y) = ∇(x2+y2) = 〈2x, 2y〉, which has a critical point at (0, 0),
and f(0, 0) = 0.

To determine the extrema of f on ∂D, we apply the method of Lagrange multipli-
ers. We have∇g = ∇(x4+y4) = 〈4x3, 4y3〉, and we set 〈2x, 2y〉 = λ〈4x3, 4y3〉. No-
tice that ∇g 6= 〈0, 0〉 for any point in ∂D, so that the Lagrange multiplier method
applies. So we need to solve simultaneously the equations 4λx2 = 2x, 4λy3 =
2y, x4 + y4 = 1.

Since (2λx2 − 1)x = 0, we have either x = 0 or 2λx2 = 1, and similarly y = 0 or
2λy2 = 1.

Case 1: x = 0 or y = 0 (but not both, since x4 + y4 = 1).

Then we get solutions (0,±1), (±1, 0) using the equation x4 + y4 = 1. Then
f(0,±1) = f(±1, 0) = 1 at these points.

Case 2: x, y 6= 0.

Then we have x2 = 1
2λ

= y2 =⇒ x4 = y4 1
2

from the constraint. Thus, x, y =

±2−
1
4 , and x2 = y2 = 1√

2
. So we have f(x, y) = x2 +y2 =

√
2 > 1 for these points.

Comparing values from the different points, we get a minimum value f(0, 0) = 0,
and maximum value

√
2.

(b) Sketch the curve x4 + y4 = 1 and the level curves of x2 + y2 going through the
maxima and minima of x2 + y2 on the curve x4 + y4 = 1. Also show ∇(x2 + y2)
and ∇(x4 + y4) at a maximum and minimum. Plot the maxima and minima of
x2 + y2 in the region x4 + y4 ≤ 1 on the same graph.

6. (a) Find the area of the part of the surface z = xy that lies within the cylinder
x2 + y2 = 1.

Solution: We plug into the formula for the area of a graph, and convert to polar
coordinates:

Area =

∫∫
x2+y2≤1

√
1 + (

∂z

∂x
)2 + (

∂z

∂y
)2 dA =

∫∫
x2+y2≤1

√
1 + y2 + x2 dA

=

∫ 2π

0

∫ 1

0

√
1 + r2rdrdθ = 2π[

1

3
(1+r2)

3
2 ]10 =

2π

3
((1+12)

3
2−(1+02)

3
2 ) =

2π

3
(2

3
2−1).

(b) Sketch the surface.
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7. Evaluate the triple integral ∫∫∫
T

xyz dV,

where T is the solid tetrahedron with vertices (0, 0, 0), (1, 0, 0), (1, 1, 0), (1, 0, 1).

Solution: The tetrahedron is given by the inequalities 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤
x− y. Then we have∫∫∫

T

xyz dV =

∫ 1

0

∫ x

0

∫ x−y

0

xyz dzdydx =

∫ 1

0

∫ x

0

[
1

2
xyz2]x−y0 dydx =

∫ 1

0

∫ x

0

1

2
xy(x−y)2 dydx

=

∫ 1

0

∫ x

0

1

2
x3y−x2y2+1

2
xy3dydx =

∫ 1

0

[
1

4
x3y2−1

3
x2y3+

1

8
xy4]x0 dx =

∫ 1

0

[
1

4
x5−1

3
x5+

1

8
x5]dx

=
1

24
[
1

6
x6]10 =

1

144
.

8. Evaluate the line integral
∫
C
F · dr, where C is given by the vector function r(t).

F(x, y) = 〈x, y, xy〉, r(t) = 〈cos t, sin t, t〉, 0 ≤ t ≤ π.

Solution: We have F(r(t)) = 〈cos t, sin t, cos t sin t〉 and r′(t) = 〈− sin t, cos t, 1〉. Then∫
C

F · dr =

∫ π

0

F(r(t)) · r′(t)dt

=

∫ π

0

〈cos t, sin t, cos t sin t〉 · 〈− sin t, cos t, 1〉dt =

∫ π

0

sin t cos tdt = [
1

2
sin2 t]π0 = 0.

9. Consider the 3-dimensional vector field

F = i + sin zj + y cos zk.

(a) Find the curl and divergence of F.

Solution: From part (b), we have F = ∇f , so ∇× F = ∇×∇f = 0.

We also have ∇ · F = ∂1
∂x

+ ∂ sin z
∂y

+ ∂y cos z
∂z

= −y sin z.

(b) Find a function f such that F = ∇f .

Solution: Suppose that F = ∇f .

Then ∂f
∂x

= 1 =⇒ f(x, y, z) = x+ g(y, z).

So ∂f
∂y

= sin z = gy =⇒ g(y, z) = y sin z + h(z).

Then ∂f
∂z

= y cos z = y cos z + h′(z), so we may take h(z) = 0.

Then we have f(x, y, z) = x+ y sin z.

(c) Evaluate the line integral
∫
C
F · dr, where C is any path connecting (1,−1, 0) to

(3, 2, π).

Solution:

We have via the Fundamental Theorem of Line Integrals∫
C

F · dr =

∫
C

∇f · dr = f(3, 2, π)− f(1,−1, 0) = 3 + 2 sinπ − (1− sin 0) = 2.

4



10. Evaluate the surface integral
∫∫

S
F · dS for the given vector field F and the oriented

surface S. In other words, find the flux of F across S.

F(x, y, z) = −xi− yj + z3k,

S is the part of the cone z =
√
x2 + y2 between the planes z = 1 and z = 3 with

downward orientation.

Solution: We have S = {(x, y, z)|z =
√
x2 + y2, 1 ≤ z ≤ 3}. We may parameterize S

then via the function r(x, y) = (x, y,
√
x2 + y2), 1 ≤

√
x2 + y2 ≤ 3.

We compute rx = 〈1, 0, 1
2
(x2 + y2)−

1
2 · 2x〉 = 〈1, 0, x

z
〉, ry = 〈0, 1, y

z
〉.

Then we have

rx × ry =

∣∣∣∣∣∣
i j k
1 0 x

z

0 1 y
z

∣∣∣∣∣∣ = −x
z
i− y

z
j + k.

Then F·(rx×ry) = 〈−x,−y, z3〉·〈−x/z,−y/z, 1〉 = x2/z+y2/z+z3 = z+z3. However,
the normal vector to S will point opposite to rx × ry, so we insert a minus sign in the
integral.

Now, we convert to polar coordinates, so that S is given by z = r, 1 ≤ r ≤ 3, 0 ≤ θ ≤
2π. So we have∫∫

S

F · dS =

∫∫
1≤r≤3

−F · (rx × ry)dA = −
∫ 2π

0

∫ 3

1

(r + r3)rdrdθ = −2π

∫ 3

1

r2 + r4dr

= −2π[
1

3
r3 +

1

5
r5]31 = −2π[9 + 243/5− 1/3− 1/5] = −1712π/15.

11. Consider the 3-dimensional vector field F(x, y, z) = 〈 −y
x2+y2

, x
x2+y2

, 0〉.

(a) What is the domain of F?

Solution: The domain is {(x, y, z)| (x, y) 6= (0, 0)}, that is the complement of
the z-axis.

(b) Show that for every smooth oriented surface S in the domain of F with smooth
oriented boundary curve C, ∫

C

F · dr = 0.

Solution: We compute

∇× F =

∣∣∣∣∣∣
i j k

∂/∂x ∂/∂y ∂/∂z
−y

x2+y2
x

x2+y2
0

∣∣∣∣∣∣ = (
∂

∂x

x

x2 + y2
+

∂

∂y

−y
x2 + y2

)k = 0,

so F is irrotational. Thus, for a smooth oriented surface S in the domain of F,
we may apply Stokes’ theorem (since the domain of F is an open set containing
S) to conclude ∫

C

F · dr =

∫∫
S

∇× F · dS = 0.
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(c) Show that there is a closed curve B in the domain of F such that∫
B

F · dr 6= 0.

[Hint: try a curve in the plane z = 0]

Solution: Let B be the closed curve r(t) = 〈cos(t), sin(t), 0〉, 0 ≤ t ≤ 2π. Then
F(r(t)) = 〈− sin(t), cos(t), 0〉, and r′(t) = 〈− sin(t), cos(t), 0〉. So∫
B

F·dr =

∫ 2π

0

F(r(t))·r′(t)dt =

∫ 2π

0

〈− sin(t), cos(t), 0〉·〈− sin(t), cos(t), 0〉 = 2π.

(d) Is F a conservative vector field?

Solution: F is not conservative, since
∫
B
F · dr = 2π, whereas a conservative

vector field has zero line integral around each closed curve by 16.3.3.

12. Consider the 3-dimensional vector field

F(x, y, z) =
1

(x2 + y2 + z2)
3
2

〈x, y, z〉.

(a) What is the domain of F?

Solution: The domain is {(x, y, z)| (x, y, z) 6= (0, 0, 0)}.
(b) Show that for every closed bounded solid region E in the domain of F with smooth

boundary surface S, ∫∫
S

F · dS = 0.

Solution: We compute ∇ · F = 0. Thus, by the Divergence Theorem,∫∫
S

F · dS =

∫∫∫
E

∇ · FdV = 0.

(c) Show that for a sphere R centered at the origin∫∫
R

F · dS = 4π.

Solution: Take the sphere R of radius r about 0 given by the equation x2 +
y2 + z2 = r2, with outward pointing unit normal n = 〈x, y, z〉/r and F(x, y, z) =
〈x, y, z〉/r3. Then∫∫

R

F · dS =

∫∫
R

F(x, y, z) · n dS =

∫
R

1

r2
dS = Area(R)/r2 = 4π.

(d) Does F = ∇×G for some vector field G?

Solution: Suppose that F = ∇×G. Then by Stokes’ Theorem∫∫
R

F · dS =

∫∫
R

∇×G · dS =

∫
∅
G · dr = 0.

However, this is false for the unit sphere from part (c), a contradiction. Thus,
F 6= ∇×G.
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