## Midterm 2 solutions for MATH 53

## November 18, 2014

1. Find the volume of the solid that lies under the hyperbolic paraboloid $z=3 y^{2}-x^{2}+2$ and above the rectangle $R=[-1,1] \times[1,2]$ in the $x y$-plane.
Solution: We set up the volume integral and apply Fubini's theorem to convert it to an iterated integral:

$$
\begin{aligned}
& \iint_{R} 3 y^{2}-x^{2}+2 d A=\int_{-1}^{1} \int_{1}^{2} 3 y^{2}-x^{2}+2 d y d x=\int_{-1}^{1}\left[y^{3}-y x^{2}+2 y\right]_{1}^{2} d x \\
= & \int_{-1}^{1}\left[2^{3}-2 x^{2}+4-\left(1-x^{2}+2\right)\right] d x=\int_{-1}^{1} 9-x^{2} d x=\left[9 x-\frac{1}{3} x^{3}\right]_{-1}^{1}=9-\frac{1}{3}-\left(-9+\frac{1}{3}\right)=17 \frac{1}{3} .
\end{aligned}
$$

2. Evaluate the integral by reversing the order of integration.

$$
\int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \cos \left(x^{2}\right) d x d y
$$

Solution: The region of integration is the type II region $R=\{(x, y), \mid 0 \leq y \leq \sqrt{\pi}, y \leq$ $x \leq \sqrt{\pi}\}$. We convert $R$ to a type I region: $0 \leq y \leq x$, so $0 \leq x \leq \sqrt{\pi}$. Therefore by Fubini's theorem (applied once in each direction), this is equivalent to the type I integral

$$
\begin{aligned}
& \int_{0}^{\sqrt{\pi}} \int_{y}^{\sqrt{\pi}} \cos \left(x^{2}\right) d x d y=\iint_{R} \cos \left(x^{2}\right) d A=\int_{0}^{\sqrt{\pi}} \int_{0}^{x} \cos \left(x^{2}\right) d y d x \\
= & \int_{0}^{\sqrt{\pi}}\left[y \cos \left(x^{2}\right)\right]_{0}^{x} d x=\int_{0}^{\sqrt{\pi}} x \cos \left(x^{2}\right) d x=\int_{0}^{\pi} \frac{1}{2} \cos (u) d u=\left[\frac{1}{2} \sin (u)\right]_{0}^{\pi}=0,
\end{aligned}
$$

using the substitution $u=x^{2}, d u=2 x d x$.
3. Let $R$ be the region $R=\left\{(x, y) \mid 1 \leq x^{2}+y^{2} \leq 4,0 \leq y \leq x\right\}$. Evaluate the integral by converting to polar coordinates:

$$
\iint_{R} \arctan (y / x) d A
$$

Solution: The region $R$ is the polar rectangle $1 \leq r=\sqrt{x^{2}+y^{2}} \leq 2,0 \leq \theta=$ $\arctan (y / x) \leq \pi / 4$, where the $\theta$ limits follow from $\arctan (0 / x)=0, \arctan (x / x)=\pi / 4$. Thus, we have

$$
\iint_{R} \arctan (y / x) d A=\int_{0}^{\pi / 4} \int_{1}^{2} \theta r d r d \theta=\int_{0}^{\pi / 4} \theta \int_{1}^{2} r d r d \theta=\left[\theta^{2} / 2\right]_{0}^{\pi / 4}\left[r^{2} / 2\right]_{1}^{2}=3 \pi^{2} / 64
$$

4. Find the volume and centroid of the solid $E$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=1$, using cylindrical or spherical coordinates, whichever seems more appropriate. [Recall that the centroid is the center of mass of the solid assuming constant density.]
Solution: In spherical coordinates, the regions are given by $0 \leq \phi \leq \pi / 4,0 \leq \rho \leq 1$. Thus, we compute the volume in spherical coordinates

$$
\begin{gathered}
\operatorname{Vol}(E)=\iiint_{E} d V=\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} \rho^{2} \sin (\phi) d \rho d \phi d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 4} \sin (\phi) d \phi \int_{0}^{1} \rho^{2} d \rho \\
=2 \pi \cdot[-\cos (\phi)]_{0}^{\pi / 4}\left[\rho^{3} / 3\right]_{0}^{1}=2 \pi \cdot(\sqrt{2}-2) / 2 \cdot \frac{1}{3}=\pi(2-\sqrt{2}) / 3
\end{gathered}
$$

We need to also compute the various moments. The $x z-$ and $y z-$ moments vanish since the region is symmetric about the $z$-axis, and therefore $\bar{x}=\bar{y}=0$. Thus, we need only compute the $x y$-moment.

$$
\begin{aligned}
M_{x y}=\iiint_{E} z d V= & \int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{1} \rho^{3} \cos (\phi) \sin (\phi) d \rho d \phi d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi / 4} \cos (\phi) \sin (\phi) d \phi \int_{0}^{1} \rho^{3} d \rho \\
& =2 \pi \cdot\left[\frac{1}{2} \sin ^{2}(\phi)\right]_{0}^{\pi / 4}\left[\rho^{4} / 4\right]_{0}^{1}=2 \pi \cdot \frac{1}{4} \cdot \frac{1}{4}=\pi / 8
\end{aligned}
$$

So $\bar{z}=M_{x y} / \operatorname{Vol}(E)=\pi / 8 /(\pi(2-\sqrt{2}) / 3)=3(2+\sqrt{2}) / 16$.
5. Let $R$ be the parallelogram with vertices $(-1,3),(1,-3),(3,-1)$, and $(1,5)$. Use the transformation $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$ to evaluate the integral

$$
\iint_{R}(4 x+8 y) d A
$$

Solution: Since the transformation is linear, it takes parallelograms to parallelograms. We set $\frac{1}{4}(u+v)=x, \frac{1}{4}(v-3 u)=y$, so that $u+v=4 x, v-3 u=4 y$. Subtracting the second equation from the first, we get $4 u=4 x-4 y$, so $u=x-y$. Add 3 times the first equation to the second to get $4 v=12 x+4 y$, so $v=3 x+y$. Thus, the rectangle $Q=[-4,4] \times[0,8]$ in the $u v$-plane maps to the parallelogram $R$ under the given transformation. We also compute the Jacobian

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
-\frac{3}{4} & \frac{1}{4}
\end{array}\right|=\frac{1}{4} .
$$

We compute the integrand as $4 x+8 y=u+v+2(v-3 u)=-5 u+3 v$. We apply the formula for the change of variables

$$
\begin{gathered}
\iint_{R} 4 x+8 y d A=\int_{-4}^{4} \int_{0}^{8}(-5 u+3 v) \frac{1}{4} d v d u=-5 / 4 \int_{-4}^{4} u d u \int_{0}^{8} d v+3 / 4 \int_{-4}^{4} d u \int_{0}^{8} v d v \\
=0+\frac{3}{4}[u]_{-4}^{4}\left[v^{2} / 2\right]_{0}^{8}=192
\end{gathered}
$$

6. Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left\langle e^{-x}+y^{2}, e^{-y}+x^{2}\right\rangle$, and where $C$ consists of the arc of the curve $y=\cos x$ from $(-\pi / 2,0)$ to $(\pi / 2,0)$ and the line segment from $(\pi / 2,0)$ to $(-\pi / 2,0)$.
Solution: The curve $-C$ is the (counterclockwise) oriented boundary of the region $D$ given by $D=\{(x, y) \mid-\pi / 2 \leq x \leq \pi / 2,0 \leq y \leq \cos (x)\}$. If we denote $\mathbb{F}=\langle P, Q\rangle$, then $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=2 x-2 y$. By Green's theorem, we therefore have

$$
\begin{gathered}
\int_{C} \mathbf{F} \cdot d \mathbf{r}=-\iint_{D} 2 x-2 y d A=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\cos (x)} 2 y-2 x d y d x=\int_{-\pi / 2}^{\pi / 2}\left[y^{2}-2 x y\right]_{0}^{\cos (x)} d x \\
=\int_{-\pi / 2}^{\pi / 2} \cos ^{2}(x)-2 x \cos (x) d x=\pi / 2
\end{gathered}
$$

[Note: the integral of the second term of the integrand is 0 by symmetry.]
7. Find the curl and divergence of the vector field $\mathbf{F}$. If it is conservative, find a function $f$ such that $\mathbf{F}=\nabla f$.

$$
\mathbf{F}(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\langle x, y, z\rangle .
$$

Solution: Let $\mathbf{r}=\langle x, y, z\rangle, \rho=\sqrt{x^{2}+y^{2}+z^{2}}$. We recall that a vector field of the form $\mathbf{F}=\mathbf{r} / \rho$ is conservative, as proved in lecture. So we find a potential for $\mathbf{F}$ first. In fact, since $\mathbf{F}$ is symmetric by rotation around the origin, we may find a potential $f(x, y, z)=g(\rho)$. We compute $\frac{\partial \rho}{\partial x}=\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}(-2 x)=-\frac{x}{\rho}$, and similarly $\frac{\partial \rho}{\partial y}=-\frac{y}{\rho}, \frac{\partial \rho}{\partial z}=-\frac{z}{\rho}$. Thus, $\mathbf{F}=\mathbf{r} / \rho=\nabla f=g^{\prime}(\rho) \nabla \rho=-g^{\prime}(\rho)\langle x, y, z\rangle / \rho$, so $g^{\prime}(\rho)=-1$, and therefore we may take $g(\rho)=-\rho$. Therefore we have $\mathbf{F}=\nabla(-\rho)$. Since $\mathbf{F}$ has continuous derivatives where defined, we have $\nabla \times \mathbf{F}=\nabla \times \nabla(-\rho)=\mathbf{0}$ by a theorem from the book.
We compute $\nabla \cdot \mathbf{F}=\frac{\partial(x / \rho)}{\partial x}+\frac{\partial(y / \rho)}{\partial y}+\frac{\partial(z / \rho)}{\partial z}$. We have $\frac{\partial(x / \rho)}{\partial x}=\frac{1}{\rho}-\frac{x^{2}}{\rho^{3}}$, and similarly for the other two coordinates. Thus, $\nabla \cdot \mathbf{F}=\frac{3}{\rho}-\frac{x^{2}+y^{2}+z^{2}}{\rho^{3}}=\frac{3}{\rho}-\frac{\rho^{2}}{\rho^{3}}=\frac{2}{\rho}$.
8. Find the surface area of the surface defined parametrically by the vector equation $\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+v \mathbf{k}, 0 \leq u \leq 1,0 \leq v \leq u$.
Solution: Let $S$ denote the surface. We have $\mathbf{r}_{u}=\langle\cos v, \sin v, 0\rangle, \mathbf{r}_{v}=\langle-u \sin v, u \cos v, 1\rangle$. Then

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos v & \sin v & 0 \\
-u \sin v & u \cos v & 1
\end{array}\right|=\langle\sin v,-\cos v, u\rangle
$$

Then $\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|=\sqrt{1+u^{2}}$. We plug into the formula for surface area:

$$
\begin{aligned}
& \operatorname{Area}(S)=\int_{0}^{1} \int_{0}^{u}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d v d u=\int_{0}^{1} \int_{0}^{u} \sqrt{1+u^{2}} d v d u \\
= & \int_{0}^{1} u \sqrt{1+u^{2}} d u=\left[\frac{1}{3}\left(1+u^{2}\right)^{3 / 2}\right]_{0}^{1}=\frac{1}{3} 2^{3 / 2}-\frac{1}{3}=\frac{2}{3} \sqrt{2}-\frac{1}{3} .
\end{aligned}
$$

